Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine how much sodium chloride ([tex]\( \text{NaCl} \)[/tex]) could be formed when [tex]\( 2.5 \, \text{mol} \, \text{Na} \)[/tex] and [tex]\( 1.1 \, \text{mol} \, \text{Cl}_2 \)[/tex] are placed in a flask and allowed to react, we start by examining the reaction stoichiometry given by the balanced chemical equation:
[tex]\[ 2 \, \text{Na} + \text{Cl}_2 \rightarrow 2 \, \text{NaCl} \][/tex]
This equation tells us that 2 moles of sodium (Na) react with 1 mole of chlorine gas ([tex]\( \text{Cl}_2 \)[/tex]) to produce 2 moles of sodium chloride ([tex]\( \text{NaCl} \)[/tex]).
### Step 1: Identify the Limiting Reactant
- Since 2 moles of Na react with 1 mole of [tex]\( \text{Cl}_2 \)[/tex], the mole ratio of Na to [tex]\( \text{Cl}_2 \)[/tex] is 2:1.
Let's determine how many moles of [tex]\( \text{NaCl} \)[/tex] can be formed by each reactant separately:
1. Sodium (Na):
- We have 2.5 moles of Na.
- According to the stoichiometry, 2 moles of Na produce 2 moles of [tex]\( \text{NaCl} \)[/tex].
- Therefore, [tex]\( 2.5 \)[/tex] moles of Na would produce [tex]\( 2.5 \)[/tex] moles of [tex]\( \text{NaCl} \)[/tex],
assuming there is enough [tex]\( \text{Cl}_2 \)[/tex].
2. Chlorine gas ([tex]\( \text{Cl}_2 \)[/tex]):
- We have 1.1 moles of [tex]\( \text{Cl}_2 \)[/tex].
- According to the stoichiometry, 1 mole of [tex]\( \text{Cl}_2 \)[/tex] produces 2 moles of [tex]\( \text{NaCl} \)[/tex].
- Therefore, [tex]\( 1.1 \)[/tex] moles of [tex]\( \text{Cl}_2 \)[/tex] would produce [tex]\( 2 \times 1.1 = 2.2 \)[/tex] moles of [tex]\( \text{NaCl} \)[/tex],
assuming there is enough Na.
### Step 2: Determine the Amount of NaCl Formed by the Limiting Reactant
- The reactant that produces fewer moles of [tex]\( \text{NaCl} \)[/tex] is the limiting reactant.
- Since chlorine gas ([tex]\( \text{Cl}_2 \)[/tex]) produces only [tex]\( 2.2 \)[/tex] moles of [tex]\( \text{NaCl} \)[/tex] and still follows the stoichiometric ratio, [tex]\( \text{Cl}_2 \)[/tex] is the limiting reactant.
Hence, the amount of [tex]\( \text{NaCl} \)[/tex] that could be formed is determined by the limiting reactant, which is chlorine gas ([tex]\( \text{Cl}_2 \)[/tex]) in this case.
### Conclusion
- The maximum amount of sodium chloride ([tex]\( \text{NaCl} \)[/tex]) that can be formed is [tex]\( 2.2 \)[/tex] moles.
Thus, the correct answer is:
C. 2.2 mol, because the amount of product is determined by the limiting reactant, chlorine.
[tex]\[ 2 \, \text{Na} + \text{Cl}_2 \rightarrow 2 \, \text{NaCl} \][/tex]
This equation tells us that 2 moles of sodium (Na) react with 1 mole of chlorine gas ([tex]\( \text{Cl}_2 \)[/tex]) to produce 2 moles of sodium chloride ([tex]\( \text{NaCl} \)[/tex]).
### Step 1: Identify the Limiting Reactant
- Since 2 moles of Na react with 1 mole of [tex]\( \text{Cl}_2 \)[/tex], the mole ratio of Na to [tex]\( \text{Cl}_2 \)[/tex] is 2:1.
Let's determine how many moles of [tex]\( \text{NaCl} \)[/tex] can be formed by each reactant separately:
1. Sodium (Na):
- We have 2.5 moles of Na.
- According to the stoichiometry, 2 moles of Na produce 2 moles of [tex]\( \text{NaCl} \)[/tex].
- Therefore, [tex]\( 2.5 \)[/tex] moles of Na would produce [tex]\( 2.5 \)[/tex] moles of [tex]\( \text{NaCl} \)[/tex],
assuming there is enough [tex]\( \text{Cl}_2 \)[/tex].
2. Chlorine gas ([tex]\( \text{Cl}_2 \)[/tex]):
- We have 1.1 moles of [tex]\( \text{Cl}_2 \)[/tex].
- According to the stoichiometry, 1 mole of [tex]\( \text{Cl}_2 \)[/tex] produces 2 moles of [tex]\( \text{NaCl} \)[/tex].
- Therefore, [tex]\( 1.1 \)[/tex] moles of [tex]\( \text{Cl}_2 \)[/tex] would produce [tex]\( 2 \times 1.1 = 2.2 \)[/tex] moles of [tex]\( \text{NaCl} \)[/tex],
assuming there is enough Na.
### Step 2: Determine the Amount of NaCl Formed by the Limiting Reactant
- The reactant that produces fewer moles of [tex]\( \text{NaCl} \)[/tex] is the limiting reactant.
- Since chlorine gas ([tex]\( \text{Cl}_2 \)[/tex]) produces only [tex]\( 2.2 \)[/tex] moles of [tex]\( \text{NaCl} \)[/tex] and still follows the stoichiometric ratio, [tex]\( \text{Cl}_2 \)[/tex] is the limiting reactant.
Hence, the amount of [tex]\( \text{NaCl} \)[/tex] that could be formed is determined by the limiting reactant, which is chlorine gas ([tex]\( \text{Cl}_2 \)[/tex]) in this case.
### Conclusion
- The maximum amount of sodium chloride ([tex]\( \text{NaCl} \)[/tex]) that can be formed is [tex]\( 2.2 \)[/tex] moles.
Thus, the correct answer is:
C. 2.2 mol, because the amount of product is determined by the limiting reactant, chlorine.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.