Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem of finding the population at various points in time given an exponential growth model, let's go step-by-step.
### Step-by-Step Solution:
1. Initial Population and Growth Rate
- Initial population, [tex]\( P_0 = 3 \)[/tex]
- Growth rate, [tex]\( r = 0.45 \)[/tex]
2. Exponential Growth Model Formula
In an exponential growth model, the population at any time [tex]\( n \)[/tex] can be determined using the formula:
[tex]\[ P_n = P_0 \times (1 + r)^n \][/tex]
Therefore, the explicit formula for [tex]\( P_n \)[/tex] is:
[tex]\[ P_n = 3 \times (1 + 0.45)^n \][/tex]
3. Calculating [tex]\( P_1 \)[/tex]
To find the population at [tex]\( n = 1 \)[/tex]:
[tex]\[ P_1 = 3 \times (1 + 0.45)^1 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_1 = 3 \times 1.45 \][/tex]
Multiplying the numbers together:
[tex]\[ P_1 = 4.35 \][/tex]
4. Calculating [tex]\( P_2 \)[/tex]
To find the population at [tex]\( n = 2 \)[/tex]:
[tex]\[ P_2 = 3 \times (1 + 0.45)^2 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_2 = 3 \times 1.45^2 \][/tex]
Calculating [tex]\( 1.45^2 \)[/tex]:
[tex]\[ P_2 = 3 \times 2.1025 \][/tex]
Multiplying the numbers together:
[tex]\[ P_2 = 6.3075 \][/tex]
5. Calculating [tex]\( P_{11} \)[/tex]
To find the population at [tex]\( n = 11 \)[/tex]:
[tex]\[ P_{11} = 3 \times (1 + 0.45)^{11} \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_{11} = 3 \times 1.45^{11} \][/tex]
Using the exponentiation:
[tex]\[ P_{11} = 3 \times 59.57280159036047 \][/tex]
Multiplying the numbers together:
[tex]\[ P_{11} = 178.7184047710814 \][/tex]
6. Final Results
[tex]\[ \begin{array}{l} P_1 = 4.35 \\ P_2 = 6.3075 \end{array} \][/tex]
The explicit formula for [tex]\( P_n \)[/tex]:
[tex]\[ P_n = 3 \times (1.45)^n \][/tex]
Finding [tex]\( P_{11} \)[/tex]:
[tex]\[ P_{11} = 178.7 \][/tex]
Thus, summarizing the results:
- [tex]\( P_1 = 4.35 \)[/tex]
- [tex]\( P_2 = 6.3075 \)[/tex]
- The explicit formula for [tex]\( P_n \)[/tex]: [tex]\( P_n = 3 \times (1.45)^n \)[/tex]
- [tex]\( P_{11} = 178.7 \)[/tex] (rounded to one decimal place)
### Step-by-Step Solution:
1. Initial Population and Growth Rate
- Initial population, [tex]\( P_0 = 3 \)[/tex]
- Growth rate, [tex]\( r = 0.45 \)[/tex]
2. Exponential Growth Model Formula
In an exponential growth model, the population at any time [tex]\( n \)[/tex] can be determined using the formula:
[tex]\[ P_n = P_0 \times (1 + r)^n \][/tex]
Therefore, the explicit formula for [tex]\( P_n \)[/tex] is:
[tex]\[ P_n = 3 \times (1 + 0.45)^n \][/tex]
3. Calculating [tex]\( P_1 \)[/tex]
To find the population at [tex]\( n = 1 \)[/tex]:
[tex]\[ P_1 = 3 \times (1 + 0.45)^1 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_1 = 3 \times 1.45 \][/tex]
Multiplying the numbers together:
[tex]\[ P_1 = 4.35 \][/tex]
4. Calculating [tex]\( P_2 \)[/tex]
To find the population at [tex]\( n = 2 \)[/tex]:
[tex]\[ P_2 = 3 \times (1 + 0.45)^2 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_2 = 3 \times 1.45^2 \][/tex]
Calculating [tex]\( 1.45^2 \)[/tex]:
[tex]\[ P_2 = 3 \times 2.1025 \][/tex]
Multiplying the numbers together:
[tex]\[ P_2 = 6.3075 \][/tex]
5. Calculating [tex]\( P_{11} \)[/tex]
To find the population at [tex]\( n = 11 \)[/tex]:
[tex]\[ P_{11} = 3 \times (1 + 0.45)^{11} \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_{11} = 3 \times 1.45^{11} \][/tex]
Using the exponentiation:
[tex]\[ P_{11} = 3 \times 59.57280159036047 \][/tex]
Multiplying the numbers together:
[tex]\[ P_{11} = 178.7184047710814 \][/tex]
6. Final Results
[tex]\[ \begin{array}{l} P_1 = 4.35 \\ P_2 = 6.3075 \end{array} \][/tex]
The explicit formula for [tex]\( P_n \)[/tex]:
[tex]\[ P_n = 3 \times (1.45)^n \][/tex]
Finding [tex]\( P_{11} \)[/tex]:
[tex]\[ P_{11} = 178.7 \][/tex]
Thus, summarizing the results:
- [tex]\( P_1 = 4.35 \)[/tex]
- [tex]\( P_2 = 6.3075 \)[/tex]
- The explicit formula for [tex]\( P_n \)[/tex]: [tex]\( P_n = 3 \times (1.45)^n \)[/tex]
- [tex]\( P_{11} = 178.7 \)[/tex] (rounded to one decimal place)
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.