Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem of finding the population at various points in time given an exponential growth model, let's go step-by-step.
### Step-by-Step Solution:
1. Initial Population and Growth Rate
- Initial population, [tex]\( P_0 = 3 \)[/tex]
- Growth rate, [tex]\( r = 0.45 \)[/tex]
2. Exponential Growth Model Formula
In an exponential growth model, the population at any time [tex]\( n \)[/tex] can be determined using the formula:
[tex]\[ P_n = P_0 \times (1 + r)^n \][/tex]
Therefore, the explicit formula for [tex]\( P_n \)[/tex] is:
[tex]\[ P_n = 3 \times (1 + 0.45)^n \][/tex]
3. Calculating [tex]\( P_1 \)[/tex]
To find the population at [tex]\( n = 1 \)[/tex]:
[tex]\[ P_1 = 3 \times (1 + 0.45)^1 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_1 = 3 \times 1.45 \][/tex]
Multiplying the numbers together:
[tex]\[ P_1 = 4.35 \][/tex]
4. Calculating [tex]\( P_2 \)[/tex]
To find the population at [tex]\( n = 2 \)[/tex]:
[tex]\[ P_2 = 3 \times (1 + 0.45)^2 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_2 = 3 \times 1.45^2 \][/tex]
Calculating [tex]\( 1.45^2 \)[/tex]:
[tex]\[ P_2 = 3 \times 2.1025 \][/tex]
Multiplying the numbers together:
[tex]\[ P_2 = 6.3075 \][/tex]
5. Calculating [tex]\( P_{11} \)[/tex]
To find the population at [tex]\( n = 11 \)[/tex]:
[tex]\[ P_{11} = 3 \times (1 + 0.45)^{11} \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_{11} = 3 \times 1.45^{11} \][/tex]
Using the exponentiation:
[tex]\[ P_{11} = 3 \times 59.57280159036047 \][/tex]
Multiplying the numbers together:
[tex]\[ P_{11} = 178.7184047710814 \][/tex]
6. Final Results
[tex]\[ \begin{array}{l} P_1 = 4.35 \\ P_2 = 6.3075 \end{array} \][/tex]
The explicit formula for [tex]\( P_n \)[/tex]:
[tex]\[ P_n = 3 \times (1.45)^n \][/tex]
Finding [tex]\( P_{11} \)[/tex]:
[tex]\[ P_{11} = 178.7 \][/tex]
Thus, summarizing the results:
- [tex]\( P_1 = 4.35 \)[/tex]
- [tex]\( P_2 = 6.3075 \)[/tex]
- The explicit formula for [tex]\( P_n \)[/tex]: [tex]\( P_n = 3 \times (1.45)^n \)[/tex]
- [tex]\( P_{11} = 178.7 \)[/tex] (rounded to one decimal place)
### Step-by-Step Solution:
1. Initial Population and Growth Rate
- Initial population, [tex]\( P_0 = 3 \)[/tex]
- Growth rate, [tex]\( r = 0.45 \)[/tex]
2. Exponential Growth Model Formula
In an exponential growth model, the population at any time [tex]\( n \)[/tex] can be determined using the formula:
[tex]\[ P_n = P_0 \times (1 + r)^n \][/tex]
Therefore, the explicit formula for [tex]\( P_n \)[/tex] is:
[tex]\[ P_n = 3 \times (1 + 0.45)^n \][/tex]
3. Calculating [tex]\( P_1 \)[/tex]
To find the population at [tex]\( n = 1 \)[/tex]:
[tex]\[ P_1 = 3 \times (1 + 0.45)^1 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_1 = 3 \times 1.45 \][/tex]
Multiplying the numbers together:
[tex]\[ P_1 = 4.35 \][/tex]
4. Calculating [tex]\( P_2 \)[/tex]
To find the population at [tex]\( n = 2 \)[/tex]:
[tex]\[ P_2 = 3 \times (1 + 0.45)^2 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_2 = 3 \times 1.45^2 \][/tex]
Calculating [tex]\( 1.45^2 \)[/tex]:
[tex]\[ P_2 = 3 \times 2.1025 \][/tex]
Multiplying the numbers together:
[tex]\[ P_2 = 6.3075 \][/tex]
5. Calculating [tex]\( P_{11} \)[/tex]
To find the population at [tex]\( n = 11 \)[/tex]:
[tex]\[ P_{11} = 3 \times (1 + 0.45)^{11} \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_{11} = 3 \times 1.45^{11} \][/tex]
Using the exponentiation:
[tex]\[ P_{11} = 3 \times 59.57280159036047 \][/tex]
Multiplying the numbers together:
[tex]\[ P_{11} = 178.7184047710814 \][/tex]
6. Final Results
[tex]\[ \begin{array}{l} P_1 = 4.35 \\ P_2 = 6.3075 \end{array} \][/tex]
The explicit formula for [tex]\( P_n \)[/tex]:
[tex]\[ P_n = 3 \times (1.45)^n \][/tex]
Finding [tex]\( P_{11} \)[/tex]:
[tex]\[ P_{11} = 178.7 \][/tex]
Thus, summarizing the results:
- [tex]\( P_1 = 4.35 \)[/tex]
- [tex]\( P_2 = 6.3075 \)[/tex]
- The explicit formula for [tex]\( P_n \)[/tex]: [tex]\( P_n = 3 \times (1.45)^n \)[/tex]
- [tex]\( P_{11} = 178.7 \)[/tex] (rounded to one decimal place)
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.