Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem of finding the population at various points in time given an exponential growth model, let's go step-by-step.
### Step-by-Step Solution:
1. Initial Population and Growth Rate
- Initial population, [tex]\( P_0 = 3 \)[/tex]
- Growth rate, [tex]\( r = 0.45 \)[/tex]
2. Exponential Growth Model Formula
In an exponential growth model, the population at any time [tex]\( n \)[/tex] can be determined using the formula:
[tex]\[ P_n = P_0 \times (1 + r)^n \][/tex]
Therefore, the explicit formula for [tex]\( P_n \)[/tex] is:
[tex]\[ P_n = 3 \times (1 + 0.45)^n \][/tex]
3. Calculating [tex]\( P_1 \)[/tex]
To find the population at [tex]\( n = 1 \)[/tex]:
[tex]\[ P_1 = 3 \times (1 + 0.45)^1 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_1 = 3 \times 1.45 \][/tex]
Multiplying the numbers together:
[tex]\[ P_1 = 4.35 \][/tex]
4. Calculating [tex]\( P_2 \)[/tex]
To find the population at [tex]\( n = 2 \)[/tex]:
[tex]\[ P_2 = 3 \times (1 + 0.45)^2 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_2 = 3 \times 1.45^2 \][/tex]
Calculating [tex]\( 1.45^2 \)[/tex]:
[tex]\[ P_2 = 3 \times 2.1025 \][/tex]
Multiplying the numbers together:
[tex]\[ P_2 = 6.3075 \][/tex]
5. Calculating [tex]\( P_{11} \)[/tex]
To find the population at [tex]\( n = 11 \)[/tex]:
[tex]\[ P_{11} = 3 \times (1 + 0.45)^{11} \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_{11} = 3 \times 1.45^{11} \][/tex]
Using the exponentiation:
[tex]\[ P_{11} = 3 \times 59.57280159036047 \][/tex]
Multiplying the numbers together:
[tex]\[ P_{11} = 178.7184047710814 \][/tex]
6. Final Results
[tex]\[ \begin{array}{l} P_1 = 4.35 \\ P_2 = 6.3075 \end{array} \][/tex]
The explicit formula for [tex]\( P_n \)[/tex]:
[tex]\[ P_n = 3 \times (1.45)^n \][/tex]
Finding [tex]\( P_{11} \)[/tex]:
[tex]\[ P_{11} = 178.7 \][/tex]
Thus, summarizing the results:
- [tex]\( P_1 = 4.35 \)[/tex]
- [tex]\( P_2 = 6.3075 \)[/tex]
- The explicit formula for [tex]\( P_n \)[/tex]: [tex]\( P_n = 3 \times (1.45)^n \)[/tex]
- [tex]\( P_{11} = 178.7 \)[/tex] (rounded to one decimal place)
### Step-by-Step Solution:
1. Initial Population and Growth Rate
- Initial population, [tex]\( P_0 = 3 \)[/tex]
- Growth rate, [tex]\( r = 0.45 \)[/tex]
2. Exponential Growth Model Formula
In an exponential growth model, the population at any time [tex]\( n \)[/tex] can be determined using the formula:
[tex]\[ P_n = P_0 \times (1 + r)^n \][/tex]
Therefore, the explicit formula for [tex]\( P_n \)[/tex] is:
[tex]\[ P_n = 3 \times (1 + 0.45)^n \][/tex]
3. Calculating [tex]\( P_1 \)[/tex]
To find the population at [tex]\( n = 1 \)[/tex]:
[tex]\[ P_1 = 3 \times (1 + 0.45)^1 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_1 = 3 \times 1.45 \][/tex]
Multiplying the numbers together:
[tex]\[ P_1 = 4.35 \][/tex]
4. Calculating [tex]\( P_2 \)[/tex]
To find the population at [tex]\( n = 2 \)[/tex]:
[tex]\[ P_2 = 3 \times (1 + 0.45)^2 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_2 = 3 \times 1.45^2 \][/tex]
Calculating [tex]\( 1.45^2 \)[/tex]:
[tex]\[ P_2 = 3 \times 2.1025 \][/tex]
Multiplying the numbers together:
[tex]\[ P_2 = 6.3075 \][/tex]
5. Calculating [tex]\( P_{11} \)[/tex]
To find the population at [tex]\( n = 11 \)[/tex]:
[tex]\[ P_{11} = 3 \times (1 + 0.45)^{11} \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ P_{11} = 3 \times 1.45^{11} \][/tex]
Using the exponentiation:
[tex]\[ P_{11} = 3 \times 59.57280159036047 \][/tex]
Multiplying the numbers together:
[tex]\[ P_{11} = 178.7184047710814 \][/tex]
6. Final Results
[tex]\[ \begin{array}{l} P_1 = 4.35 \\ P_2 = 6.3075 \end{array} \][/tex]
The explicit formula for [tex]\( P_n \)[/tex]:
[tex]\[ P_n = 3 \times (1.45)^n \][/tex]
Finding [tex]\( P_{11} \)[/tex]:
[tex]\[ P_{11} = 178.7 \][/tex]
Thus, summarizing the results:
- [tex]\( P_1 = 4.35 \)[/tex]
- [tex]\( P_2 = 6.3075 \)[/tex]
- The explicit formula for [tex]\( P_n \)[/tex]: [tex]\( P_n = 3 \times (1.45)^n \)[/tex]
- [tex]\( P_{11} = 178.7 \)[/tex] (rounded to one decimal place)
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.