Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for a population that grows according to an exponential growth model, given the initial conditions [tex]\( P_0 = 20 \)[/tex] and [tex]\( P_1 = 28 \)[/tex], we first need to determine the growth factor and then use it to complete both the recursive and explicit formulas.
### Step-by-Step Solution:
1. Determine the Growth Factor:
To find the growth factor, we compare the population at time [tex]\( n = 1 \)[/tex] to the population at time [tex]\( n = 0 \)[/tex]:
[tex]\[ \text{Growth Factor} = \frac{P_1}{P_0} = \frac{28}{20} = 1.4 \][/tex]
2. Complete the Recursive Formula:
The recursive formula is of the form:
[tex]\[ P_n = \text{Growth Factor} \times P_{n-1} \][/tex]
Substituting the growth factor we found:
[tex]\[ P_n = 1.4 \times P_{n-1} \][/tex]
3. Write the Explicit Formula:
The explicit formula for an exponential growth model can be written as:
[tex]\[ P_n = P_0 \times (\text{Growth Factor})^n \][/tex]
Substituting the known values:
[tex]\[ P_n = 20 \times (1.4)^n \][/tex]
To summarize:
1. The recursive formula is:
[tex]\[ P_n = 1.4 \times P_{n-1} \][/tex]
2. The explicit formula is:
[tex]\[ P_n = 20 \times (1.4)^n \][/tex]
### Step-by-Step Solution:
1. Determine the Growth Factor:
To find the growth factor, we compare the population at time [tex]\( n = 1 \)[/tex] to the population at time [tex]\( n = 0 \)[/tex]:
[tex]\[ \text{Growth Factor} = \frac{P_1}{P_0} = \frac{28}{20} = 1.4 \][/tex]
2. Complete the Recursive Formula:
The recursive formula is of the form:
[tex]\[ P_n = \text{Growth Factor} \times P_{n-1} \][/tex]
Substituting the growth factor we found:
[tex]\[ P_n = 1.4 \times P_{n-1} \][/tex]
3. Write the Explicit Formula:
The explicit formula for an exponential growth model can be written as:
[tex]\[ P_n = P_0 \times (\text{Growth Factor})^n \][/tex]
Substituting the known values:
[tex]\[ P_n = 20 \times (1.4)^n \][/tex]
To summarize:
1. The recursive formula is:
[tex]\[ P_n = 1.4 \times P_{n-1} \][/tex]
2. The explicit formula is:
[tex]\[ P_n = 20 \times (1.4)^n \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.