Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the coordinates of point [tex]\( P \)[/tex] that partitions the line segment [tex]\( AB \)[/tex] into a part-to-whole ratio of [tex]\( 1:5 \)[/tex], we first need to understand what this ratio represents and how to use it in our calculations.
Given:
- Line segment [tex]\( AB \)[/tex] with endpoints at [tex]\( A(-9, 3) \)[/tex] and [tex]\( B(1, 8) \)[/tex].
- Part-to-whole ratio [tex]\( 1 : 5 \)[/tex].
In order to determine the correct placement of point [tex]\( P \)[/tex] along segment [tex]\( AB \)[/tex], we need to convert this part-to-whole ratio into a fraction.
The ratio [tex]\( 1 : 5 \)[/tex] means that if we were to divide the segment into a total of 6 equal parts (since [tex]\( 1 + 5 = 6 \)[/tex]), point [tex]\( P \)[/tex] would be placed after the first part when moving from [tex]\( A \)[/tex] to [tex]\( B \)[/tex].
This translates to the fraction of the distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] relative to the entire segment [tex]\( AB \)[/tex]. The fraction is:
[tex]\[ \frac{m}{m+n} = \frac{1}{1+5} = \frac{1}{6} \][/tex]
Therefore, the fraction [tex]\(\frac{m}{m+n} \)[/tex] equals [tex]\( \frac{1}{6} \)[/tex].
Given:
- Line segment [tex]\( AB \)[/tex] with endpoints at [tex]\( A(-9, 3) \)[/tex] and [tex]\( B(1, 8) \)[/tex].
- Part-to-whole ratio [tex]\( 1 : 5 \)[/tex].
In order to determine the correct placement of point [tex]\( P \)[/tex] along segment [tex]\( AB \)[/tex], we need to convert this part-to-whole ratio into a fraction.
The ratio [tex]\( 1 : 5 \)[/tex] means that if we were to divide the segment into a total of 6 equal parts (since [tex]\( 1 + 5 = 6 \)[/tex]), point [tex]\( P \)[/tex] would be placed after the first part when moving from [tex]\( A \)[/tex] to [tex]\( B \)[/tex].
This translates to the fraction of the distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] relative to the entire segment [tex]\( AB \)[/tex]. The fraction is:
[tex]\[ \frac{m}{m+n} = \frac{1}{1+5} = \frac{1}{6} \][/tex]
Therefore, the fraction [tex]\(\frac{m}{m+n} \)[/tex] equals [tex]\( \frac{1}{6} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.