Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Nitayah's assertion can indeed be evaluated by looking at the characteristics of the given equation [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex].
### Step-by-Step Solution:
1. Understand the Equation:
The given equation is [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex]. This indicates two possible expressions for [tex]\( y \)[/tex]:
- [tex]\( y_1 = 3 + \sqrt{x + 2} \)[/tex]
- [tex]\( y_2 = 3 - \sqrt{x + 2} \)[/tex]
Here, [tex]\( \sqrt{x + 2} \)[/tex] denotes the square root of [tex]\( x + 2 \)[/tex].
2. Vertical Line Test:
A relation is considered a function if for each value of [tex]\( x \)[/tex], there is exactly one value of [tex]\( y \)[/tex]. To check if [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex] is a function, we can use the Vertical Line Test.
- The Vertical Line Test states that if a vertical line intersects the graph of a relation at more than one point, then the relation is not a function.
3. Evaluate for Non-unicity:
For any given value of [tex]\( x \)[/tex] in [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex]:
- Consider a specific value of [tex]\( x \)[/tex]. For example, let [tex]\( x = 2 \)[/tex].
- [tex]\( y_1 = 3 + \sqrt{2 + 2} = 3 + 2 = 5 \)[/tex]
- [tex]\( y_2 = 3 - \sqrt{2 + 2} = 3 - 2 = 1 \)[/tex]
- This approach shows that for [tex]\( x = 2 \)[/tex], we get both [tex]\( y = 5 \)[/tex] and [tex]\( y = 1 \)[/tex].
- This is true for all [tex]\( x \geq -2 \)[/tex] where the square root is defined (because for [tex]\( x < -2 \)[/tex], the expression inside the square root becomes negative and hence complex, which we generally avoid in real-valued functions).
4. Conclusion from the Vertical Line Test:
Since there are always two possible [tex]\( y \)[/tex] values (one positive and one negative deviation from [tex]\( 3 \)[/tex] due to [tex]\( \sqrt{x + 2} \)[/tex]), the graph fails the Vertical Line Test. Therefore, [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex] is indeed not a function because it does not produce one unique [tex]\( y \)[/tex] for a given [tex]\( x \)[/tex].
5. Inverting Non-function:
When trying to find the inverse of an equation, if the original equation is not a function, the inverse will also not be a function, due to the inherent ambiguity in mapping multiple values of one variable to a single value of another.
### Final Statement:
Nitayah is right because [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex] is not a function. As a consequence, its inverse cannot form a valid function either. Each [tex]\( x \)[/tex] in the given relation maps to two different [tex]\( y \)[/tex] values, thereby invalidating it as a function and thus confirming Nitayah's statement.
### Step-by-Step Solution:
1. Understand the Equation:
The given equation is [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex]. This indicates two possible expressions for [tex]\( y \)[/tex]:
- [tex]\( y_1 = 3 + \sqrt{x + 2} \)[/tex]
- [tex]\( y_2 = 3 - \sqrt{x + 2} \)[/tex]
Here, [tex]\( \sqrt{x + 2} \)[/tex] denotes the square root of [tex]\( x + 2 \)[/tex].
2. Vertical Line Test:
A relation is considered a function if for each value of [tex]\( x \)[/tex], there is exactly one value of [tex]\( y \)[/tex]. To check if [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex] is a function, we can use the Vertical Line Test.
- The Vertical Line Test states that if a vertical line intersects the graph of a relation at more than one point, then the relation is not a function.
3. Evaluate for Non-unicity:
For any given value of [tex]\( x \)[/tex] in [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex]:
- Consider a specific value of [tex]\( x \)[/tex]. For example, let [tex]\( x = 2 \)[/tex].
- [tex]\( y_1 = 3 + \sqrt{2 + 2} = 3 + 2 = 5 \)[/tex]
- [tex]\( y_2 = 3 - \sqrt{2 + 2} = 3 - 2 = 1 \)[/tex]
- This approach shows that for [tex]\( x = 2 \)[/tex], we get both [tex]\( y = 5 \)[/tex] and [tex]\( y = 1 \)[/tex].
- This is true for all [tex]\( x \geq -2 \)[/tex] where the square root is defined (because for [tex]\( x < -2 \)[/tex], the expression inside the square root becomes negative and hence complex, which we generally avoid in real-valued functions).
4. Conclusion from the Vertical Line Test:
Since there are always two possible [tex]\( y \)[/tex] values (one positive and one negative deviation from [tex]\( 3 \)[/tex] due to [tex]\( \sqrt{x + 2} \)[/tex]), the graph fails the Vertical Line Test. Therefore, [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex] is indeed not a function because it does not produce one unique [tex]\( y \)[/tex] for a given [tex]\( x \)[/tex].
5. Inverting Non-function:
When trying to find the inverse of an equation, if the original equation is not a function, the inverse will also not be a function, due to the inherent ambiguity in mapping multiple values of one variable to a single value of another.
### Final Statement:
Nitayah is right because [tex]\( y = 3 \pm \sqrt{x + 2} \)[/tex] is not a function. As a consequence, its inverse cannot form a valid function either. Each [tex]\( x \)[/tex] in the given relation maps to two different [tex]\( y \)[/tex] values, thereby invalidating it as a function and thus confirming Nitayah's statement.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.