Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's find the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex].
### Step-by-Step Solution:
1. Determine the Slope of the Given Line
The given line is [tex]\(y = x + 4\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope and [tex]\(b\)[/tex] is the y-intercept.
Here, [tex]\(m = 1\)[/tex] because the coefficient of [tex]\(x\)[/tex] is 1.
2. Recognize that Parallel Lines Have the Same Slope
Since the new line we are finding is parallel to [tex]\(y = x + 4\)[/tex], it will have the same slope. Therefore, the slope [tex]\(m\)[/tex] of our new line is also 1.
3. Use the Point-Slope Form of a Line Equation
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.
Substituting the given point [tex]\((-1, 2)\)[/tex] and the slope [tex]\(m = 1\)[/tex] into the point-slope form:
[tex]\[ y - 2 = 1(x - (-1)) \][/tex]
[tex]\[ y - 2 = 1(x + 1) \][/tex]
4. Simplify the Equation
Distribute the 1 on the right-hand side:
[tex]\[ y - 2 = x + 1 \][/tex]
Add 2 to both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = x + 3 \][/tex]
Thus, the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex] is:
[tex]\[ \boxed{y = x + 3} \][/tex]
### Step-by-Step Solution:
1. Determine the Slope of the Given Line
The given line is [tex]\(y = x + 4\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope and [tex]\(b\)[/tex] is the y-intercept.
Here, [tex]\(m = 1\)[/tex] because the coefficient of [tex]\(x\)[/tex] is 1.
2. Recognize that Parallel Lines Have the Same Slope
Since the new line we are finding is parallel to [tex]\(y = x + 4\)[/tex], it will have the same slope. Therefore, the slope [tex]\(m\)[/tex] of our new line is also 1.
3. Use the Point-Slope Form of a Line Equation
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.
Substituting the given point [tex]\((-1, 2)\)[/tex] and the slope [tex]\(m = 1\)[/tex] into the point-slope form:
[tex]\[ y - 2 = 1(x - (-1)) \][/tex]
[tex]\[ y - 2 = 1(x + 1) \][/tex]
4. Simplify the Equation
Distribute the 1 on the right-hand side:
[tex]\[ y - 2 = x + 1 \][/tex]
Add 2 to both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = x + 3 \][/tex]
Thus, the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex] is:
[tex]\[ \boxed{y = x + 3} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.