Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's find the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex].
### Step-by-Step Solution:
1. Determine the Slope of the Given Line
The given line is [tex]\(y = x + 4\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope and [tex]\(b\)[/tex] is the y-intercept.
Here, [tex]\(m = 1\)[/tex] because the coefficient of [tex]\(x\)[/tex] is 1.
2. Recognize that Parallel Lines Have the Same Slope
Since the new line we are finding is parallel to [tex]\(y = x + 4\)[/tex], it will have the same slope. Therefore, the slope [tex]\(m\)[/tex] of our new line is also 1.
3. Use the Point-Slope Form of a Line Equation
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.
Substituting the given point [tex]\((-1, 2)\)[/tex] and the slope [tex]\(m = 1\)[/tex] into the point-slope form:
[tex]\[ y - 2 = 1(x - (-1)) \][/tex]
[tex]\[ y - 2 = 1(x + 1) \][/tex]
4. Simplify the Equation
Distribute the 1 on the right-hand side:
[tex]\[ y - 2 = x + 1 \][/tex]
Add 2 to both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = x + 3 \][/tex]
Thus, the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex] is:
[tex]\[ \boxed{y = x + 3} \][/tex]
### Step-by-Step Solution:
1. Determine the Slope of the Given Line
The given line is [tex]\(y = x + 4\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope and [tex]\(b\)[/tex] is the y-intercept.
Here, [tex]\(m = 1\)[/tex] because the coefficient of [tex]\(x\)[/tex] is 1.
2. Recognize that Parallel Lines Have the Same Slope
Since the new line we are finding is parallel to [tex]\(y = x + 4\)[/tex], it will have the same slope. Therefore, the slope [tex]\(m\)[/tex] of our new line is also 1.
3. Use the Point-Slope Form of a Line Equation
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.
Substituting the given point [tex]\((-1, 2)\)[/tex] and the slope [tex]\(m = 1\)[/tex] into the point-slope form:
[tex]\[ y - 2 = 1(x - (-1)) \][/tex]
[tex]\[ y - 2 = 1(x + 1) \][/tex]
4. Simplify the Equation
Distribute the 1 on the right-hand side:
[tex]\[ y - 2 = x + 1 \][/tex]
Add 2 to both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = x + 3 \][/tex]
Thus, the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex] is:
[tex]\[ \boxed{y = x + 3} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.