Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The diagonal of a square is [tex]x[/tex] units. What is the area of the square in terms of [tex]x[/tex]?

A. [tex]\frac{1}{2} x^2[/tex] square units
B. [tex]x^2[/tex] square units
C. [tex]2x[/tex] square units
D. [tex]\frac{1}{2} x^2[/tex] square units


Sagot :

To determine the area of a square in terms of its diagonal [tex]\( x \)[/tex], we can follow these detailed steps:

1. Relationship Between Diagonal and Side Length:
The diagonal [tex]\( d \)[/tex] of a square with side length [tex]\( s \)[/tex] can be derived using the Pythagorean theorem in the right triangle formed by two sides and the diagonal:
[tex]\[ d = s\sqrt{2} \][/tex]
Given that the diagonal is [tex]\( x \)[/tex] units, we have:
[tex]\[ x = s\sqrt{2} \][/tex]

2. Solving for Side Length:
We can isolate the side length [tex]\( s \)[/tex] by dividing both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ s = \frac{x}{\sqrt{2}} \][/tex]

3. Calculating the Area:
The area [tex]\( A \)[/tex] of a square is given by the square of its side length:
[tex]\[ A = s^2 \][/tex]
Substituting [tex]\( s = \frac{x}{\sqrt{2}} \)[/tex] into the area formula:
[tex]\[ A = \left( \frac{x}{\sqrt{2}} \right)^2 \][/tex]

4. Simplifying the Expression:
We simplify the squared term:
[tex]\[ A = \frac{x^2}{(\sqrt{2})^2} = \frac{x^2}{2} \][/tex]

Therefore, the area of the square in terms of the diagonal [tex]\( x \)[/tex] is:
[tex]\[ \frac{x^2}{2} \text{ square units} \][/tex]

The correct answer is [tex]\(\boxed{\frac{1}{2} x^2}\)[/tex] square units.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.