Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the area of a square in terms of its diagonal [tex]\( x \)[/tex], we can follow these detailed steps:
1. Relationship Between Diagonal and Side Length:
The diagonal [tex]\( d \)[/tex] of a square with side length [tex]\( s \)[/tex] can be derived using the Pythagorean theorem in the right triangle formed by two sides and the diagonal:
[tex]\[ d = s\sqrt{2} \][/tex]
Given that the diagonal is [tex]\( x \)[/tex] units, we have:
[tex]\[ x = s\sqrt{2} \][/tex]
2. Solving for Side Length:
We can isolate the side length [tex]\( s \)[/tex] by dividing both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ s = \frac{x}{\sqrt{2}} \][/tex]
3. Calculating the Area:
The area [tex]\( A \)[/tex] of a square is given by the square of its side length:
[tex]\[ A = s^2 \][/tex]
Substituting [tex]\( s = \frac{x}{\sqrt{2}} \)[/tex] into the area formula:
[tex]\[ A = \left( \frac{x}{\sqrt{2}} \right)^2 \][/tex]
4. Simplifying the Expression:
We simplify the squared term:
[tex]\[ A = \frac{x^2}{(\sqrt{2})^2} = \frac{x^2}{2} \][/tex]
Therefore, the area of the square in terms of the diagonal [tex]\( x \)[/tex] is:
[tex]\[ \frac{x^2}{2} \text{ square units} \][/tex]
The correct answer is [tex]\(\boxed{\frac{1}{2} x^2}\)[/tex] square units.
1. Relationship Between Diagonal and Side Length:
The diagonal [tex]\( d \)[/tex] of a square with side length [tex]\( s \)[/tex] can be derived using the Pythagorean theorem in the right triangle formed by two sides and the diagonal:
[tex]\[ d = s\sqrt{2} \][/tex]
Given that the diagonal is [tex]\( x \)[/tex] units, we have:
[tex]\[ x = s\sqrt{2} \][/tex]
2. Solving for Side Length:
We can isolate the side length [tex]\( s \)[/tex] by dividing both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ s = \frac{x}{\sqrt{2}} \][/tex]
3. Calculating the Area:
The area [tex]\( A \)[/tex] of a square is given by the square of its side length:
[tex]\[ A = s^2 \][/tex]
Substituting [tex]\( s = \frac{x}{\sqrt{2}} \)[/tex] into the area formula:
[tex]\[ A = \left( \frac{x}{\sqrt{2}} \right)^2 \][/tex]
4. Simplifying the Expression:
We simplify the squared term:
[tex]\[ A = \frac{x^2}{(\sqrt{2})^2} = \frac{x^2}{2} \][/tex]
Therefore, the area of the square in terms of the diagonal [tex]\( x \)[/tex] is:
[tex]\[ \frac{x^2}{2} \text{ square units} \][/tex]
The correct answer is [tex]\(\boxed{\frac{1}{2} x^2}\)[/tex] square units.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.