At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the approximate perimeter of a kite with vertices at [tex]\((2, 4)\)[/tex], [tex]\((5, 4)\)[/tex], [tex]\((5, 1)\)[/tex], and [tex]\((0, -1)\)[/tex], we need to calculate the lengths of its four sides and then sum these lengths. Here are the detailed steps:
1. Calculate the distance between the vertices [tex]\((2, 4)\)[/tex] and [tex]\((5, 4)\)[/tex]:
These points share the same y-coordinate, so the distance is simply the difference in x-coordinates:
[tex]\[ \text{Distance} = \sqrt{(5 - 2)^2 + (4 - 4)^2} = \sqrt{3^2 + 0^2} = \sqrt{9} = 3.0 \][/tex]
2. Calculate the distance between the vertices [tex]\((5, 4)\)[/tex] and [tex]\((5, 1)\)[/tex]:
These points share the same x-coordinate, so the distance is simply the difference in y-coordinates:
[tex]\[ \text{Distance} = \sqrt{(5 - 5)^2 + (4 - 1)^2} = \sqrt{0^2 + 3^2} = \sqrt{9} = 3.0 \][/tex]
3. Calculate the distance between the vertices [tex]\((5, 1)\)[/tex] and [tex]\((0, -1)\)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(0 - 5)^2 + (-1 - 1)^2} = \sqrt{(-5)^2 + (-2)^2} = \sqrt{25 + 4} = \sqrt{29} \approx 5.385 \][/tex]
4. Calculate the distance between the vertices [tex]\((0, -1)\)[/tex] and [tex]\((2, 4)\)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(2 - 0)^2 + (4 - (-1))^2} = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
Next, we add these distances together to find the perimeter of the kite:
[tex]\[ \text{Perimeter} = 3.0 + 3.0 + 5.385 + 5.385 \approx 16.770 \][/tex]
Rounding this to the nearest tenth:
[tex]\[ \text{Perimeter} \approx 16.8 \text{ units} \][/tex]
Thus, the approximate perimeter of the kite is [tex]\(16.8\)[/tex] units. Therefore, the correct answer is:
[tex]\[ \boxed{16.8 \text{ units}} \][/tex]
1. Calculate the distance between the vertices [tex]\((2, 4)\)[/tex] and [tex]\((5, 4)\)[/tex]:
These points share the same y-coordinate, so the distance is simply the difference in x-coordinates:
[tex]\[ \text{Distance} = \sqrt{(5 - 2)^2 + (4 - 4)^2} = \sqrt{3^2 + 0^2} = \sqrt{9} = 3.0 \][/tex]
2. Calculate the distance between the vertices [tex]\((5, 4)\)[/tex] and [tex]\((5, 1)\)[/tex]:
These points share the same x-coordinate, so the distance is simply the difference in y-coordinates:
[tex]\[ \text{Distance} = \sqrt{(5 - 5)^2 + (4 - 1)^2} = \sqrt{0^2 + 3^2} = \sqrt{9} = 3.0 \][/tex]
3. Calculate the distance between the vertices [tex]\((5, 1)\)[/tex] and [tex]\((0, -1)\)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(0 - 5)^2 + (-1 - 1)^2} = \sqrt{(-5)^2 + (-2)^2} = \sqrt{25 + 4} = \sqrt{29} \approx 5.385 \][/tex]
4. Calculate the distance between the vertices [tex]\((0, -1)\)[/tex] and [tex]\((2, 4)\)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(2 - 0)^2 + (4 - (-1))^2} = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
Next, we add these distances together to find the perimeter of the kite:
[tex]\[ \text{Perimeter} = 3.0 + 3.0 + 5.385 + 5.385 \approx 16.770 \][/tex]
Rounding this to the nearest tenth:
[tex]\[ \text{Perimeter} \approx 16.8 \text{ units} \][/tex]
Thus, the approximate perimeter of the kite is [tex]\(16.8\)[/tex] units. Therefore, the correct answer is:
[tex]\[ \boxed{16.8 \text{ units}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.