At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's go through the process of rewriting the given quadratic equation [tex]\( y = x^2 - 4x - 21 \)[/tex] in its vertex form by completing the square.
### Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ y = x^2 - 4x - 21 \][/tex]
2. Isolate the [tex]\(x\)[/tex]-terms and the constant term:
[tex]\[ y = (x^2 - 4x) - 21 \][/tex]
3. Complete the square for the quadratic expression [tex]\(x^2 - 4x\)[/tex]:
- Take the coefficient of [tex]\(x\)[/tex] (which is [tex]\(-4\)[/tex]) and halve it to get [tex]\(-2\)[/tex].
- Square this result to get [tex]\(4\)[/tex].
- Add and subtract this square inside the parentheses:
[tex]\[ x^2 - 4x = (x^2 - 4x + 4) - 4 \][/tex]
4. Rewrite the equation using the completed square:
[tex]\[ y = (x^2 - 4x + 4) - 4 - 21 \][/tex]
Simplify this to:
[tex]\[ y = (x - 2)^2 - 25 \][/tex]
5. Expression in vertex form:
The vertex form of a quadratic equation is [tex]\( y = a(x - h)^2 + k \)[/tex].
Here, [tex]\(a = 1\)[/tex], [tex]\(h = 2\)[/tex], and [tex]\(k = -25\)[/tex], so:
[tex]\[ y = (x - 2)^2 - 25 \][/tex]
### Identifying the Vertex:
The vertex of the parabola [tex]\( y = (x - 2)^2 - 25 \)[/tex] is at the point [tex]\((h, k) = (2, -25)\)[/tex].
### Identifying the Minimum or Maximum Value:
For the quadratic equation in the form [tex]\( y = a(x - h)^2 + k \)[/tex]:
- If [tex]\(a > 0\)[/tex], the parabola opens upwards and has a minimum value at the vertex [tex]\( (h, k) \)[/tex].
- If [tex]\(a < 0\)[/tex], the parabola opens downwards and has a maximum value at the vertex [tex]\( (h, k) \)[/tex].
Here, [tex]\( a = 1 \)[/tex], which is positive. Therefore, the vertex [tex]\((2, -25)\)[/tex] represents the minimum point of the parabola.
So, the minimum value of the function [tex]\( y = x^2 - 4x - 21 \)[/tex] is [tex]\(-25\)[/tex].
### Conclusion:
- The vertex form of the equation [tex]\( y = x^2 - 4x - 21 \)[/tex] is [tex]\( y = (x - 2)^2 - 25 \)[/tex].
- The minimum value of the function is [tex]\(-25\)[/tex].
### Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ y = x^2 - 4x - 21 \][/tex]
2. Isolate the [tex]\(x\)[/tex]-terms and the constant term:
[tex]\[ y = (x^2 - 4x) - 21 \][/tex]
3. Complete the square for the quadratic expression [tex]\(x^2 - 4x\)[/tex]:
- Take the coefficient of [tex]\(x\)[/tex] (which is [tex]\(-4\)[/tex]) and halve it to get [tex]\(-2\)[/tex].
- Square this result to get [tex]\(4\)[/tex].
- Add and subtract this square inside the parentheses:
[tex]\[ x^2 - 4x = (x^2 - 4x + 4) - 4 \][/tex]
4. Rewrite the equation using the completed square:
[tex]\[ y = (x^2 - 4x + 4) - 4 - 21 \][/tex]
Simplify this to:
[tex]\[ y = (x - 2)^2 - 25 \][/tex]
5. Expression in vertex form:
The vertex form of a quadratic equation is [tex]\( y = a(x - h)^2 + k \)[/tex].
Here, [tex]\(a = 1\)[/tex], [tex]\(h = 2\)[/tex], and [tex]\(k = -25\)[/tex], so:
[tex]\[ y = (x - 2)^2 - 25 \][/tex]
### Identifying the Vertex:
The vertex of the parabola [tex]\( y = (x - 2)^2 - 25 \)[/tex] is at the point [tex]\((h, k) = (2, -25)\)[/tex].
### Identifying the Minimum or Maximum Value:
For the quadratic equation in the form [tex]\( y = a(x - h)^2 + k \)[/tex]:
- If [tex]\(a > 0\)[/tex], the parabola opens upwards and has a minimum value at the vertex [tex]\( (h, k) \)[/tex].
- If [tex]\(a < 0\)[/tex], the parabola opens downwards and has a maximum value at the vertex [tex]\( (h, k) \)[/tex].
Here, [tex]\( a = 1 \)[/tex], which is positive. Therefore, the vertex [tex]\((2, -25)\)[/tex] represents the minimum point of the parabola.
So, the minimum value of the function [tex]\( y = x^2 - 4x - 21 \)[/tex] is [tex]\(-25\)[/tex].
### Conclusion:
- The vertex form of the equation [tex]\( y = x^2 - 4x - 21 \)[/tex] is [tex]\( y = (x - 2)^2 - 25 \)[/tex].
- The minimum value of the function is [tex]\(-25\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.