At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the selling price that maximizes profit, we need to analyze the given profit function:
[tex]\[ P(x) = -25x^2 + 1600x - 3600 \][/tex]
This function is a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], with:
[tex]\[ a = -25, \, b = 1600, \, \text{and} \, c = -3600 \][/tex]
For quadratic functions of the form [tex]\( ax^2 + bx + c \)[/tex], the vertex (which represents the maximum or minimum point) occurs at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, the coefficient [tex]\( a \)[/tex] is negative ([tex]\( -25 \)[/tex]), indicating that the parabola opens downwards, thus the vertex represents the maximum profit point.
Plug the values from the profit function into the vertex formula:
[tex]\[ x = -\frac{1600}{2 \cdot (-25)} \][/tex]
Simplify the expression:
[tex]\[ x = -\frac{1600}{-50} \][/tex]
[tex]\[ x = 32 \][/tex]
Thus, the selling price that gives the maximum profit is:
[tex]\[ \boxed{32} \][/tex]
This means the company will earn the maximum profit when each spy camera is sold at [tex]\( \$32 \)[/tex].
[tex]\[ P(x) = -25x^2 + 1600x - 3600 \][/tex]
This function is a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], with:
[tex]\[ a = -25, \, b = 1600, \, \text{and} \, c = -3600 \][/tex]
For quadratic functions of the form [tex]\( ax^2 + bx + c \)[/tex], the vertex (which represents the maximum or minimum point) occurs at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, the coefficient [tex]\( a \)[/tex] is negative ([tex]\( -25 \)[/tex]), indicating that the parabola opens downwards, thus the vertex represents the maximum profit point.
Plug the values from the profit function into the vertex formula:
[tex]\[ x = -\frac{1600}{2 \cdot (-25)} \][/tex]
Simplify the expression:
[tex]\[ x = -\frac{1600}{-50} \][/tex]
[tex]\[ x = 32 \][/tex]
Thus, the selling price that gives the maximum profit is:
[tex]\[ \boxed{32} \][/tex]
This means the company will earn the maximum profit when each spy camera is sold at [tex]\( \$32 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.