Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
Given:
- The 4th term ([tex]\(a_n\)[/tex]) of a geometric progression is 8.
- The 5th term ([tex]\(a_m\)[/tex]) of the same geometric progression is [tex]\(\frac{64}{27}\)[/tex].
### Finding the Common Ratio [tex]\((r)\)[/tex]
In a geometric progression, the [tex]\(n\)[/tex]-th term is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
Let's set up equations for the given terms:
1) For the 4th term ([tex]\(a_n = 8\)[/tex]):
[tex]\[ 8 = a \cdot r^{4-1} \][/tex]
[tex]\[ 8 = a \cdot r^3 \][/tex]
2) For the 5th term ([tex]\(a_m = \frac{64}{27}\)[/tex]):
[tex]\[ \frac{64}{27} = a \cdot r^{5-1} \][/tex]
[tex]\[ \frac{64}{27} = a \cdot r^4 \][/tex]
To find the common ratio [tex]\(r\)[/tex], we can divide the second equation by the first equation:
[tex]\[ \frac{\frac{64}{27}}{8} = \frac{a \cdot r^4}{a \cdot r^3} \][/tex]
[tex]\[ \frac{\frac{64}{27}}{8} = r \][/tex]
Simplifying the left side:
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = r \][/tex]
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = \frac{64}{216} = \frac{64}{6^3} = \frac{64}{666} = \frac{1}{6 \cdot 6} \approx 0.296 \][/tex]
Thus, the common ratio is:
[tex]\[ r \approx 0.296 \][/tex]
### Finding the First Term [tex]\((a)\)[/tex]
Now that we have the common ratio [tex]\(r\)[/tex], we can substitute it back into one of the equations to find the first term [tex]\(a\)[/tex].
Using the equation for the 4th term:
[tex]\[ 8 = a \cdot (0.296)^3 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{8}{(0.296)^3} \][/tex]
[tex]\[ a \approx 307.546875 \][/tex]
So the first term [tex]\(a\)[/tex] is approximately:
[tex]\[ a \approx 307.55 \][/tex]
### Summary:
1) The common ratio [tex]\(r\)[/tex] is approximately [tex]\(0.296\)[/tex].
2) The first term [tex]\(a\)[/tex] is approximately [tex]\(307.55\)[/tex].
Given:
- The 4th term ([tex]\(a_n\)[/tex]) of a geometric progression is 8.
- The 5th term ([tex]\(a_m\)[/tex]) of the same geometric progression is [tex]\(\frac{64}{27}\)[/tex].
### Finding the Common Ratio [tex]\((r)\)[/tex]
In a geometric progression, the [tex]\(n\)[/tex]-th term is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
Let's set up equations for the given terms:
1) For the 4th term ([tex]\(a_n = 8\)[/tex]):
[tex]\[ 8 = a \cdot r^{4-1} \][/tex]
[tex]\[ 8 = a \cdot r^3 \][/tex]
2) For the 5th term ([tex]\(a_m = \frac{64}{27}\)[/tex]):
[tex]\[ \frac{64}{27} = a \cdot r^{5-1} \][/tex]
[tex]\[ \frac{64}{27} = a \cdot r^4 \][/tex]
To find the common ratio [tex]\(r\)[/tex], we can divide the second equation by the first equation:
[tex]\[ \frac{\frac{64}{27}}{8} = \frac{a \cdot r^4}{a \cdot r^3} \][/tex]
[tex]\[ \frac{\frac{64}{27}}{8} = r \][/tex]
Simplifying the left side:
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = r \][/tex]
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = \frac{64}{216} = \frac{64}{6^3} = \frac{64}{666} = \frac{1}{6 \cdot 6} \approx 0.296 \][/tex]
Thus, the common ratio is:
[tex]\[ r \approx 0.296 \][/tex]
### Finding the First Term [tex]\((a)\)[/tex]
Now that we have the common ratio [tex]\(r\)[/tex], we can substitute it back into one of the equations to find the first term [tex]\(a\)[/tex].
Using the equation for the 4th term:
[tex]\[ 8 = a \cdot (0.296)^3 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{8}{(0.296)^3} \][/tex]
[tex]\[ a \approx 307.546875 \][/tex]
So the first term [tex]\(a\)[/tex] is approximately:
[tex]\[ a \approx 307.55 \][/tex]
### Summary:
1) The common ratio [tex]\(r\)[/tex] is approximately [tex]\(0.296\)[/tex].
2) The first term [tex]\(a\)[/tex] is approximately [tex]\(307.55\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.