Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's solve the problem step-by-step.
Given:
- The 4th term ([tex]\(a_n\)[/tex]) of a geometric progression is 8.
- The 5th term ([tex]\(a_m\)[/tex]) of the same geometric progression is [tex]\(\frac{64}{27}\)[/tex].
### Finding the Common Ratio [tex]\((r)\)[/tex]
In a geometric progression, the [tex]\(n\)[/tex]-th term is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
Let's set up equations for the given terms:
1) For the 4th term ([tex]\(a_n = 8\)[/tex]):
[tex]\[ 8 = a \cdot r^{4-1} \][/tex]
[tex]\[ 8 = a \cdot r^3 \][/tex]
2) For the 5th term ([tex]\(a_m = \frac{64}{27}\)[/tex]):
[tex]\[ \frac{64}{27} = a \cdot r^{5-1} \][/tex]
[tex]\[ \frac{64}{27} = a \cdot r^4 \][/tex]
To find the common ratio [tex]\(r\)[/tex], we can divide the second equation by the first equation:
[tex]\[ \frac{\frac{64}{27}}{8} = \frac{a \cdot r^4}{a \cdot r^3} \][/tex]
[tex]\[ \frac{\frac{64}{27}}{8} = r \][/tex]
Simplifying the left side:
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = r \][/tex]
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = \frac{64}{216} = \frac{64}{6^3} = \frac{64}{666} = \frac{1}{6 \cdot 6} \approx 0.296 \][/tex]
Thus, the common ratio is:
[tex]\[ r \approx 0.296 \][/tex]
### Finding the First Term [tex]\((a)\)[/tex]
Now that we have the common ratio [tex]\(r\)[/tex], we can substitute it back into one of the equations to find the first term [tex]\(a\)[/tex].
Using the equation for the 4th term:
[tex]\[ 8 = a \cdot (0.296)^3 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{8}{(0.296)^3} \][/tex]
[tex]\[ a \approx 307.546875 \][/tex]
So the first term [tex]\(a\)[/tex] is approximately:
[tex]\[ a \approx 307.55 \][/tex]
### Summary:
1) The common ratio [tex]\(r\)[/tex] is approximately [tex]\(0.296\)[/tex].
2) The first term [tex]\(a\)[/tex] is approximately [tex]\(307.55\)[/tex].
Given:
- The 4th term ([tex]\(a_n\)[/tex]) of a geometric progression is 8.
- The 5th term ([tex]\(a_m\)[/tex]) of the same geometric progression is [tex]\(\frac{64}{27}\)[/tex].
### Finding the Common Ratio [tex]\((r)\)[/tex]
In a geometric progression, the [tex]\(n\)[/tex]-th term is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
Let's set up equations for the given terms:
1) For the 4th term ([tex]\(a_n = 8\)[/tex]):
[tex]\[ 8 = a \cdot r^{4-1} \][/tex]
[tex]\[ 8 = a \cdot r^3 \][/tex]
2) For the 5th term ([tex]\(a_m = \frac{64}{27}\)[/tex]):
[tex]\[ \frac{64}{27} = a \cdot r^{5-1} \][/tex]
[tex]\[ \frac{64}{27} = a \cdot r^4 \][/tex]
To find the common ratio [tex]\(r\)[/tex], we can divide the second equation by the first equation:
[tex]\[ \frac{\frac{64}{27}}{8} = \frac{a \cdot r^4}{a \cdot r^3} \][/tex]
[tex]\[ \frac{\frac{64}{27}}{8} = r \][/tex]
Simplifying the left side:
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = r \][/tex]
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = \frac{64}{216} = \frac{64}{6^3} = \frac{64}{666} = \frac{1}{6 \cdot 6} \approx 0.296 \][/tex]
Thus, the common ratio is:
[tex]\[ r \approx 0.296 \][/tex]
### Finding the First Term [tex]\((a)\)[/tex]
Now that we have the common ratio [tex]\(r\)[/tex], we can substitute it back into one of the equations to find the first term [tex]\(a\)[/tex].
Using the equation for the 4th term:
[tex]\[ 8 = a \cdot (0.296)^3 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{8}{(0.296)^3} \][/tex]
[tex]\[ a \approx 307.546875 \][/tex]
So the first term [tex]\(a\)[/tex] is approximately:
[tex]\[ a \approx 307.55 \][/tex]
### Summary:
1) The common ratio [tex]\(r\)[/tex] is approximately [tex]\(0.296\)[/tex].
2) The first term [tex]\(a\)[/tex] is approximately [tex]\(307.55\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.