Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's solve the problem step-by-step.
Given:
- The 4th term ([tex]\(a_n\)[/tex]) of a geometric progression is 8.
- The 5th term ([tex]\(a_m\)[/tex]) of the same geometric progression is [tex]\(\frac{64}{27}\)[/tex].
### Finding the Common Ratio [tex]\((r)\)[/tex]
In a geometric progression, the [tex]\(n\)[/tex]-th term is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
Let's set up equations for the given terms:
1) For the 4th term ([tex]\(a_n = 8\)[/tex]):
[tex]\[ 8 = a \cdot r^{4-1} \][/tex]
[tex]\[ 8 = a \cdot r^3 \][/tex]
2) For the 5th term ([tex]\(a_m = \frac{64}{27}\)[/tex]):
[tex]\[ \frac{64}{27} = a \cdot r^{5-1} \][/tex]
[tex]\[ \frac{64}{27} = a \cdot r^4 \][/tex]
To find the common ratio [tex]\(r\)[/tex], we can divide the second equation by the first equation:
[tex]\[ \frac{\frac{64}{27}}{8} = \frac{a \cdot r^4}{a \cdot r^3} \][/tex]
[tex]\[ \frac{\frac{64}{27}}{8} = r \][/tex]
Simplifying the left side:
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = r \][/tex]
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = \frac{64}{216} = \frac{64}{6^3} = \frac{64}{666} = \frac{1}{6 \cdot 6} \approx 0.296 \][/tex]
Thus, the common ratio is:
[tex]\[ r \approx 0.296 \][/tex]
### Finding the First Term [tex]\((a)\)[/tex]
Now that we have the common ratio [tex]\(r\)[/tex], we can substitute it back into one of the equations to find the first term [tex]\(a\)[/tex].
Using the equation for the 4th term:
[tex]\[ 8 = a \cdot (0.296)^3 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{8}{(0.296)^3} \][/tex]
[tex]\[ a \approx 307.546875 \][/tex]
So the first term [tex]\(a\)[/tex] is approximately:
[tex]\[ a \approx 307.55 \][/tex]
### Summary:
1) The common ratio [tex]\(r\)[/tex] is approximately [tex]\(0.296\)[/tex].
2) The first term [tex]\(a\)[/tex] is approximately [tex]\(307.55\)[/tex].
Given:
- The 4th term ([tex]\(a_n\)[/tex]) of a geometric progression is 8.
- The 5th term ([tex]\(a_m\)[/tex]) of the same geometric progression is [tex]\(\frac{64}{27}\)[/tex].
### Finding the Common Ratio [tex]\((r)\)[/tex]
In a geometric progression, the [tex]\(n\)[/tex]-th term is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
Let's set up equations for the given terms:
1) For the 4th term ([tex]\(a_n = 8\)[/tex]):
[tex]\[ 8 = a \cdot r^{4-1} \][/tex]
[tex]\[ 8 = a \cdot r^3 \][/tex]
2) For the 5th term ([tex]\(a_m = \frac{64}{27}\)[/tex]):
[tex]\[ \frac{64}{27} = a \cdot r^{5-1} \][/tex]
[tex]\[ \frac{64}{27} = a \cdot r^4 \][/tex]
To find the common ratio [tex]\(r\)[/tex], we can divide the second equation by the first equation:
[tex]\[ \frac{\frac{64}{27}}{8} = \frac{a \cdot r^4}{a \cdot r^3} \][/tex]
[tex]\[ \frac{\frac{64}{27}}{8} = r \][/tex]
Simplifying the left side:
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = r \][/tex]
[tex]\[ \frac{64}{27} \cdot \frac{1}{8} = \frac{64}{216} = \frac{64}{6^3} = \frac{64}{666} = \frac{1}{6 \cdot 6} \approx 0.296 \][/tex]
Thus, the common ratio is:
[tex]\[ r \approx 0.296 \][/tex]
### Finding the First Term [tex]\((a)\)[/tex]
Now that we have the common ratio [tex]\(r\)[/tex], we can substitute it back into one of the equations to find the first term [tex]\(a\)[/tex].
Using the equation for the 4th term:
[tex]\[ 8 = a \cdot (0.296)^3 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{8}{(0.296)^3} \][/tex]
[tex]\[ a \approx 307.546875 \][/tex]
So the first term [tex]\(a\)[/tex] is approximately:
[tex]\[ a \approx 307.55 \][/tex]
### Summary:
1) The common ratio [tex]\(r\)[/tex] is approximately [tex]\(0.296\)[/tex].
2) The first term [tex]\(a\)[/tex] is approximately [tex]\(307.55\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.