Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve the problem step-by-step.
Step 1: Identify the given information.
- Current (I) = 0.2 amperes
- Time (t) = 1 hour
Step 2: Convert the time from hours to seconds.
[tex]\[ \text{Time (in seconds)} = 1 \text{ hour} \times 3600 \text{ seconds/hour} = 3600 \text{ seconds} \][/tex]
Step 3: Calculate the total charge (Q) passed through the solution.
Using the formula:
[tex]\[ Q = I \times t \][/tex]
[tex]\[ Q = 0.2 \text{ amperes} \times 3600 \text{ seconds} \][/tex]
[tex]\[ Q = 720 \text{ coulombs} \][/tex]
Step 4: Determine the moles of electrons transferred.
Using Faraday's constant (F), which is approximately 96485 coulombs per mole (C/mol):
[tex]\[ \text{Moles of electrons} = \frac{Q}{F} \][/tex]
[tex]\[ \text{Moles of electrons} = \frac{720 \text{ coulombs}}{96485 \text{ C/mol}} \][/tex]
[tex]\[ \text{Moles of electrons} = 0.007462 \text{ mol} \][/tex]
Step 5: Calculate the moles of copper deposited. Copper typically has a valency of 2, meaning each copper ion (Cu²⁺) requires 2 electrons for deposition.
[tex]\[ \text{Moles of copper} = \frac{\text{Moles of electrons}}{\text{Valency of copper}} \][/tex]
[tex]\[ \text{Moles of copper} = \frac{0.007462 \text{ mol}}{2} \][/tex]
[tex]\[ \text{Moles of copper} = 0.003731 \text{ mol} \][/tex]
Step 6: Determine the mass of copper deposited. Copper has an atomic mass of approximately 63.5 grams per mole.
[tex]\[ \text{Mass of copper} = \text{Moles of copper} \times \text{Atomic mass of copper} \][/tex]
[tex]\[ \text{Mass of copper} = 0.003731 \text{ mol} \times 63.5 \text{ g/mol} \][/tex]
[tex]\[ \text{Mass of copper} = 0.236928 \text{ grams} \][/tex]
Therefore, the mass of copper that is deposited is approximately 0.2369 grams.
Step 1: Identify the given information.
- Current (I) = 0.2 amperes
- Time (t) = 1 hour
Step 2: Convert the time from hours to seconds.
[tex]\[ \text{Time (in seconds)} = 1 \text{ hour} \times 3600 \text{ seconds/hour} = 3600 \text{ seconds} \][/tex]
Step 3: Calculate the total charge (Q) passed through the solution.
Using the formula:
[tex]\[ Q = I \times t \][/tex]
[tex]\[ Q = 0.2 \text{ amperes} \times 3600 \text{ seconds} \][/tex]
[tex]\[ Q = 720 \text{ coulombs} \][/tex]
Step 4: Determine the moles of electrons transferred.
Using Faraday's constant (F), which is approximately 96485 coulombs per mole (C/mol):
[tex]\[ \text{Moles of electrons} = \frac{Q}{F} \][/tex]
[tex]\[ \text{Moles of electrons} = \frac{720 \text{ coulombs}}{96485 \text{ C/mol}} \][/tex]
[tex]\[ \text{Moles of electrons} = 0.007462 \text{ mol} \][/tex]
Step 5: Calculate the moles of copper deposited. Copper typically has a valency of 2, meaning each copper ion (Cu²⁺) requires 2 electrons for deposition.
[tex]\[ \text{Moles of copper} = \frac{\text{Moles of electrons}}{\text{Valency of copper}} \][/tex]
[tex]\[ \text{Moles of copper} = \frac{0.007462 \text{ mol}}{2} \][/tex]
[tex]\[ \text{Moles of copper} = 0.003731 \text{ mol} \][/tex]
Step 6: Determine the mass of copper deposited. Copper has an atomic mass of approximately 63.5 grams per mole.
[tex]\[ \text{Mass of copper} = \text{Moles of copper} \times \text{Atomic mass of copper} \][/tex]
[tex]\[ \text{Mass of copper} = 0.003731 \text{ mol} \times 63.5 \text{ g/mol} \][/tex]
[tex]\[ \text{Mass of copper} = 0.236928 \text{ grams} \][/tex]
Therefore, the mass of copper that is deposited is approximately 0.2369 grams.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.