Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the problem step-by-step.
Step 1: Identify the given information.
- Current (I) = 0.2 amperes
- Time (t) = 1 hour
Step 2: Convert the time from hours to seconds.
[tex]\[ \text{Time (in seconds)} = 1 \text{ hour} \times 3600 \text{ seconds/hour} = 3600 \text{ seconds} \][/tex]
Step 3: Calculate the total charge (Q) passed through the solution.
Using the formula:
[tex]\[ Q = I \times t \][/tex]
[tex]\[ Q = 0.2 \text{ amperes} \times 3600 \text{ seconds} \][/tex]
[tex]\[ Q = 720 \text{ coulombs} \][/tex]
Step 4: Determine the moles of electrons transferred.
Using Faraday's constant (F), which is approximately 96485 coulombs per mole (C/mol):
[tex]\[ \text{Moles of electrons} = \frac{Q}{F} \][/tex]
[tex]\[ \text{Moles of electrons} = \frac{720 \text{ coulombs}}{96485 \text{ C/mol}} \][/tex]
[tex]\[ \text{Moles of electrons} = 0.007462 \text{ mol} \][/tex]
Step 5: Calculate the moles of copper deposited. Copper typically has a valency of 2, meaning each copper ion (Cu²⁺) requires 2 electrons for deposition.
[tex]\[ \text{Moles of copper} = \frac{\text{Moles of electrons}}{\text{Valency of copper}} \][/tex]
[tex]\[ \text{Moles of copper} = \frac{0.007462 \text{ mol}}{2} \][/tex]
[tex]\[ \text{Moles of copper} = 0.003731 \text{ mol} \][/tex]
Step 6: Determine the mass of copper deposited. Copper has an atomic mass of approximately 63.5 grams per mole.
[tex]\[ \text{Mass of copper} = \text{Moles of copper} \times \text{Atomic mass of copper} \][/tex]
[tex]\[ \text{Mass of copper} = 0.003731 \text{ mol} \times 63.5 \text{ g/mol} \][/tex]
[tex]\[ \text{Mass of copper} = 0.236928 \text{ grams} \][/tex]
Therefore, the mass of copper that is deposited is approximately 0.2369 grams.
Step 1: Identify the given information.
- Current (I) = 0.2 amperes
- Time (t) = 1 hour
Step 2: Convert the time from hours to seconds.
[tex]\[ \text{Time (in seconds)} = 1 \text{ hour} \times 3600 \text{ seconds/hour} = 3600 \text{ seconds} \][/tex]
Step 3: Calculate the total charge (Q) passed through the solution.
Using the formula:
[tex]\[ Q = I \times t \][/tex]
[tex]\[ Q = 0.2 \text{ amperes} \times 3600 \text{ seconds} \][/tex]
[tex]\[ Q = 720 \text{ coulombs} \][/tex]
Step 4: Determine the moles of electrons transferred.
Using Faraday's constant (F), which is approximately 96485 coulombs per mole (C/mol):
[tex]\[ \text{Moles of electrons} = \frac{Q}{F} \][/tex]
[tex]\[ \text{Moles of electrons} = \frac{720 \text{ coulombs}}{96485 \text{ C/mol}} \][/tex]
[tex]\[ \text{Moles of electrons} = 0.007462 \text{ mol} \][/tex]
Step 5: Calculate the moles of copper deposited. Copper typically has a valency of 2, meaning each copper ion (Cu²⁺) requires 2 electrons for deposition.
[tex]\[ \text{Moles of copper} = \frac{\text{Moles of electrons}}{\text{Valency of copper}} \][/tex]
[tex]\[ \text{Moles of copper} = \frac{0.007462 \text{ mol}}{2} \][/tex]
[tex]\[ \text{Moles of copper} = 0.003731 \text{ mol} \][/tex]
Step 6: Determine the mass of copper deposited. Copper has an atomic mass of approximately 63.5 grams per mole.
[tex]\[ \text{Mass of copper} = \text{Moles of copper} \times \text{Atomic mass of copper} \][/tex]
[tex]\[ \text{Mass of copper} = 0.003731 \text{ mol} \times 63.5 \text{ g/mol} \][/tex]
[tex]\[ \text{Mass of copper} = 0.236928 \text{ grams} \][/tex]
Therefore, the mass of copper that is deposited is approximately 0.2369 grams.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.