Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's go through the detailed steps to find the value of [tex]\(\sec \theta\)[/tex] given that [tex]\(\tan \theta = -1\)[/tex] and [tex]\(\frac{3\pi}{2} < \theta < 2\pi\)[/tex].
Step 1: Identify the Quadrant
Given the range [tex]\(\frac{3\pi}{2} < \theta < 2\pi\)[/tex], we're working with angles in the fourth quadrant (the interval from [tex]\(270^\circ\)[/tex] to [tex]\(360^\circ\)[/tex]).
Step 2: Determine the Angle
Knowing that [tex]\(\tan \theta = -1\)[/tex], we recognize that tangent is negative in the fourth quadrant. The reference angle where [tex]\(\tan = 1\)[/tex] is [tex]\(\frac{\pi}{4}\)[/tex] (or [tex]\(45^\circ\)[/tex]). For [tex]\(\tan \theta = -1\)[/tex] in the fourth quadrant, [tex]\(\theta\)[/tex] must be [tex]\((2\pi - \frac{\pi}{4}) = \frac{7\pi}{4}\)[/tex].
So, [tex]\(\theta = \frac{7\pi}{4}\)[/tex].
Step 3: Calculate [tex]\(\sec \theta\)[/tex]
Recall that [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex].
First, we need to find [tex]\(\cos \theta\)[/tex]:
[tex]\[ \theta = \frac{7\pi}{4} \][/tex]
Since [tex]\(\cos \theta\)[/tex] has the same value as [tex]\(\cos\)[/tex] of its reference angle (but with an appropriate sign for the quadrant), and cosine is positive in the fourth quadrant:
[tex]\[ \cos \left(\frac{7\pi}{4}\right) = \cos \left(2\pi - \frac{\pi}{4}\right) = \cos \left(-\frac{\pi}{4}\right) = \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
Thus,
[tex]\[ \sec \left( \frac{7\pi}{4} \right) = \frac{1}{\cos \left( \frac{7\pi}{4} \right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \][/tex]
Therefore, the value of [tex]\(\sec \theta\)[/tex] given that [tex]\(\tan \theta = -1\)[/tex] and [tex]\(\frac{3\pi}{2} < \theta < 2\pi\)[/tex] is:
[tex]\[ \boxed{\sqrt{2}} \][/tex]
Step 1: Identify the Quadrant
Given the range [tex]\(\frac{3\pi}{2} < \theta < 2\pi\)[/tex], we're working with angles in the fourth quadrant (the interval from [tex]\(270^\circ\)[/tex] to [tex]\(360^\circ\)[/tex]).
Step 2: Determine the Angle
Knowing that [tex]\(\tan \theta = -1\)[/tex], we recognize that tangent is negative in the fourth quadrant. The reference angle where [tex]\(\tan = 1\)[/tex] is [tex]\(\frac{\pi}{4}\)[/tex] (or [tex]\(45^\circ\)[/tex]). For [tex]\(\tan \theta = -1\)[/tex] in the fourth quadrant, [tex]\(\theta\)[/tex] must be [tex]\((2\pi - \frac{\pi}{4}) = \frac{7\pi}{4}\)[/tex].
So, [tex]\(\theta = \frac{7\pi}{4}\)[/tex].
Step 3: Calculate [tex]\(\sec \theta\)[/tex]
Recall that [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex].
First, we need to find [tex]\(\cos \theta\)[/tex]:
[tex]\[ \theta = \frac{7\pi}{4} \][/tex]
Since [tex]\(\cos \theta\)[/tex] has the same value as [tex]\(\cos\)[/tex] of its reference angle (but with an appropriate sign for the quadrant), and cosine is positive in the fourth quadrant:
[tex]\[ \cos \left(\frac{7\pi}{4}\right) = \cos \left(2\pi - \frac{\pi}{4}\right) = \cos \left(-\frac{\pi}{4}\right) = \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
Thus,
[tex]\[ \sec \left( \frac{7\pi}{4} \right) = \frac{1}{\cos \left( \frac{7\pi}{4} \right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \][/tex]
Therefore, the value of [tex]\(\sec \theta\)[/tex] given that [tex]\(\tan \theta = -1\)[/tex] and [tex]\(\frac{3\pi}{2} < \theta < 2\pi\)[/tex] is:
[tex]\[ \boxed{\sqrt{2}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.