Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Absolutely, let's solve this problem step by step.
Given:
- The first quartile ([tex]\( Q1 \)[/tex]) is 175.
- The quartile deviation ([tex]\( QD \)[/tex]) is 20.
### Step 1: Calculate the Third Quartile ([tex]\( Q3 \)[/tex])
We know that the quartile deviation (QD) is defined as half the difference between the first and third quartiles. Mathematically, it is represented as:
[tex]\[ QD = \frac{Q3 - Q1}{2} \][/tex]
Rearranging this formula to solve for [tex]\( Q3 \)[/tex]:
[tex]\[ Q3 = Q1 + 2 \cdot QD \][/tex]
Substitute the given values:
[tex]\[ Q3 = 175 + 2 \cdot 20 = 175 + 40 = 215 \][/tex]
So, the third quartile ([tex]\( Q3 \)[/tex]) is 215.
### Step 2: Calculate the Coefficient of Quartile Deviation ([tex]\( CQD \)[/tex])
The coefficient of quartile deviation is defined as the ratio of the quartile deviation to the sum of the first and third quartiles. Mathematically, it is given by:
[tex]\[ CQD = \frac{QD}{Q3 + Q1} \][/tex]
Substitute the given values along with the calculated [tex]\( Q3 \)[/tex]:
[tex]\[ CQD = \frac{20}{215 + 175} = \frac{20}{390} \approx 0.05128205128205128 \][/tex]
So, the coefficient of quartile deviation ([tex]\( CQD \)[/tex]) is approximately 0.0513.
### Summary
The third quartile ([tex]\( Q3 \)[/tex]) is 215, and the coefficient of quartile deviation ([tex]\( CQD \)[/tex]) is approximately 0.0513.
Given:
- The first quartile ([tex]\( Q1 \)[/tex]) is 175.
- The quartile deviation ([tex]\( QD \)[/tex]) is 20.
### Step 1: Calculate the Third Quartile ([tex]\( Q3 \)[/tex])
We know that the quartile deviation (QD) is defined as half the difference between the first and third quartiles. Mathematically, it is represented as:
[tex]\[ QD = \frac{Q3 - Q1}{2} \][/tex]
Rearranging this formula to solve for [tex]\( Q3 \)[/tex]:
[tex]\[ Q3 = Q1 + 2 \cdot QD \][/tex]
Substitute the given values:
[tex]\[ Q3 = 175 + 2 \cdot 20 = 175 + 40 = 215 \][/tex]
So, the third quartile ([tex]\( Q3 \)[/tex]) is 215.
### Step 2: Calculate the Coefficient of Quartile Deviation ([tex]\( CQD \)[/tex])
The coefficient of quartile deviation is defined as the ratio of the quartile deviation to the sum of the first and third quartiles. Mathematically, it is given by:
[tex]\[ CQD = \frac{QD}{Q3 + Q1} \][/tex]
Substitute the given values along with the calculated [tex]\( Q3 \)[/tex]:
[tex]\[ CQD = \frac{20}{215 + 175} = \frac{20}{390} \approx 0.05128205128205128 \][/tex]
So, the coefficient of quartile deviation ([tex]\( CQD \)[/tex]) is approximately 0.0513.
### Summary
The third quartile ([tex]\( Q3 \)[/tex]) is 215, and the coefficient of quartile deviation ([tex]\( CQD \)[/tex]) is approximately 0.0513.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.