Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the relationship between [tex]\(y\)[/tex] and [tex]\(x\)[/tex], we start by recognizing that since [tex]\(y\)[/tex] and [tex]\(x\)[/tex] are in direct proportion, their relationship can be expressed as [tex]\(y = kx\)[/tex], where [tex]\(k\)[/tex] is a proportionality constant.
Given:
- [tex]\(x_1 = 3\)[/tex]
- [tex]\(x_2 = 8\)[/tex]
- Difference in [tex]\(y\)[/tex] values when [tex]\(x = 3\)[/tex] and [tex]\(x = 8\)[/tex] is 20.
This piece of information can be mathematically represented as:
[tex]\[ y_2 - y_1 = 20 \][/tex]
where [tex]\(y_1\)[/tex] and [tex]\(y_2\)[/tex] are the corresponding [tex]\(y\)[/tex] values for [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex].
Since [tex]\(y\)[/tex] is directly proportional to [tex]\(x\)[/tex],
[tex]\[ y_1 = k x_1 \][/tex]
[tex]\[ y_2 = k x_2 \][/tex]
Therefore,
[tex]\[ y_2 - y_1 = k x_2 - k x_1 \][/tex]
[tex]\[ 20 = k x_2 - k x_1 \][/tex]
[tex]\[ 20 = k (x_2 - x_1) \][/tex]
Substituting the given values of [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex]:
[tex]\[ 20 = k (8 - 3) \][/tex]
[tex]\[ 20 = k (5) \][/tex]
Solving for [tex]\(k\)[/tex]:
[tex]\[ k = \frac{20}{5} = 4.0 \][/tex]
Now that we have determined the proportionality constant [tex]\(k = 4.0\)[/tex], we can express [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex]:
[tex]\[ y = 4.0 x \][/tex]
Therefore, the equation representing [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex] is:
[tex]\[ y = 4.0 x \][/tex]
Given:
- [tex]\(x_1 = 3\)[/tex]
- [tex]\(x_2 = 8\)[/tex]
- Difference in [tex]\(y\)[/tex] values when [tex]\(x = 3\)[/tex] and [tex]\(x = 8\)[/tex] is 20.
This piece of information can be mathematically represented as:
[tex]\[ y_2 - y_1 = 20 \][/tex]
where [tex]\(y_1\)[/tex] and [tex]\(y_2\)[/tex] are the corresponding [tex]\(y\)[/tex] values for [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex].
Since [tex]\(y\)[/tex] is directly proportional to [tex]\(x\)[/tex],
[tex]\[ y_1 = k x_1 \][/tex]
[tex]\[ y_2 = k x_2 \][/tex]
Therefore,
[tex]\[ y_2 - y_1 = k x_2 - k x_1 \][/tex]
[tex]\[ 20 = k x_2 - k x_1 \][/tex]
[tex]\[ 20 = k (x_2 - x_1) \][/tex]
Substituting the given values of [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex]:
[tex]\[ 20 = k (8 - 3) \][/tex]
[tex]\[ 20 = k (5) \][/tex]
Solving for [tex]\(k\)[/tex]:
[tex]\[ k = \frac{20}{5} = 4.0 \][/tex]
Now that we have determined the proportionality constant [tex]\(k = 4.0\)[/tex], we can express [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex]:
[tex]\[ y = 4.0 x \][/tex]
Therefore, the equation representing [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex] is:
[tex]\[ y = 4.0 x \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.