Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
When potassium iodide (KI) reacts with lead(II) nitrate [tex]\(\text{Pb}\left(\text{NO}_3\right)_2\)[/tex], a double displacement reaction is expected to occur. In this type of reaction, the cations and anions of two different molecules switch places, forming two new compounds. Here's the step-by-step process:
1. Identify Reactants and Their Ions:
- Potassium iodide (KI) dissociates in water to form potassium ions ([tex]\(\text{K}^+\)[/tex]) and iodide ions ([tex]\(\text{I}^-\)[/tex]).
- Lead(II) nitrate [tex]\(\text{Pb}\left(\text{NO}_3\right)_2\)[/tex] dissociates in water to form lead ions ([tex]\(\text{Pb}^{2+}\)[/tex]) and nitrate ions ([tex]\(\text{NO}_3^-\)[/tex]).
2. Write the Dissociation Equations:
- [tex]\(\text{KI}\rightarrow \text{K}^+ + \text{I}^-\)[/tex]
- [tex]\(\text{Pb}\left(\text{NO}_3\right)_2 \rightarrow \text{Pb}^{2+} + 2\text{NO}_3^-\)[/tex]
3. Predict the Products:
- The cations ([tex]\(\text{K}^+\)[/tex] and [tex]\(\text{Pb}^{2+}\)[/tex]) will pair with the anions ([tex]\(\text{I}^-\)[/tex] and [tex]\(\text{NO}_3^-\)[/tex]) of the other compound to form new products.
- Potassium ions ([tex]\(\text{K}^+\)[/tex]) pair with nitrate ions ([tex]\(\text{NO}_3^-\)[/tex]) to form potassium nitrate ([tex]\(\text{KNO}_3\)[/tex]).
- Lead ions ([tex]\(\text{Pb}^{2+}\)[/tex]) pair with iodide ions ([tex]\(\text{I}^-\)[/tex]) to form lead(II) iodide ([tex]\(\text{PbI}_2\)[/tex]).
4. Write the Balanced Chemical Equation:
- [tex]\(\text{2KI} + \text{Pb}\left(\text{NO}_3\right)_2 \rightarrow 2\text{KNO}_3 + \text{PbI}_2\)[/tex]
5. Describe the Reaction:
- Potassium nitrate ([tex]\(\text{KNO}_3\)[/tex]) is soluble in water and remains in solution.
- Lead(II) iodide ([tex]\(\text{PbI}_2\)[/tex]) is insoluble in water and precipitates out as a yellow solid.
The overall chemical reaction is:
[tex]\[ \text{2KI}_{(aq)} + \text{Pb}\left(\text{NO}_3\right)_2_{(aq)} \rightarrow 2\text{KNO}_3_{(aq)} + \text{PbI}_2_{(s)} \][/tex]
Thus, the expected reaction between potassium iodide and lead(II) nitrate is a double displacement reaction that produces potassium nitrate in solution and a yellow precipitate of lead(II) iodide.
1. Identify Reactants and Their Ions:
- Potassium iodide (KI) dissociates in water to form potassium ions ([tex]\(\text{K}^+\)[/tex]) and iodide ions ([tex]\(\text{I}^-\)[/tex]).
- Lead(II) nitrate [tex]\(\text{Pb}\left(\text{NO}_3\right)_2\)[/tex] dissociates in water to form lead ions ([tex]\(\text{Pb}^{2+}\)[/tex]) and nitrate ions ([tex]\(\text{NO}_3^-\)[/tex]).
2. Write the Dissociation Equations:
- [tex]\(\text{KI}\rightarrow \text{K}^+ + \text{I}^-\)[/tex]
- [tex]\(\text{Pb}\left(\text{NO}_3\right)_2 \rightarrow \text{Pb}^{2+} + 2\text{NO}_3^-\)[/tex]
3. Predict the Products:
- The cations ([tex]\(\text{K}^+\)[/tex] and [tex]\(\text{Pb}^{2+}\)[/tex]) will pair with the anions ([tex]\(\text{I}^-\)[/tex] and [tex]\(\text{NO}_3^-\)[/tex]) of the other compound to form new products.
- Potassium ions ([tex]\(\text{K}^+\)[/tex]) pair with nitrate ions ([tex]\(\text{NO}_3^-\)[/tex]) to form potassium nitrate ([tex]\(\text{KNO}_3\)[/tex]).
- Lead ions ([tex]\(\text{Pb}^{2+}\)[/tex]) pair with iodide ions ([tex]\(\text{I}^-\)[/tex]) to form lead(II) iodide ([tex]\(\text{PbI}_2\)[/tex]).
4. Write the Balanced Chemical Equation:
- [tex]\(\text{2KI} + \text{Pb}\left(\text{NO}_3\right)_2 \rightarrow 2\text{KNO}_3 + \text{PbI}_2\)[/tex]
5. Describe the Reaction:
- Potassium nitrate ([tex]\(\text{KNO}_3\)[/tex]) is soluble in water and remains in solution.
- Lead(II) iodide ([tex]\(\text{PbI}_2\)[/tex]) is insoluble in water and precipitates out as a yellow solid.
The overall chemical reaction is:
[tex]\[ \text{2KI}_{(aq)} + \text{Pb}\left(\text{NO}_3\right)_2_{(aq)} \rightarrow 2\text{KNO}_3_{(aq)} + \text{PbI}_2_{(s)} \][/tex]
Thus, the expected reaction between potassium iodide and lead(II) nitrate is a double displacement reaction that produces potassium nitrate in solution and a yellow precipitate of lead(II) iodide.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.