Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the time in which Rs 300 will amount to Rs 405 at an interest rate of 4%, we can use the simple interest formula. This formula is:
[tex]\[ A = P(1 + rt) \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount (Rs 405)
- [tex]\( P \)[/tex] is the principal amount (Rs 300)
- [tex]\( r \)[/tex] is the annual interest rate (4% per year or 0.04 in decimal form)
- [tex]\( t \)[/tex] is the time in years
We need to rearrange this formula to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{A}{P \cdot (1 + rt)} - 1 \][/tex]/ r
Given the values:
- [tex]\( A = 405 \)[/tex]
- [tex]\( P = 300 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
Substitute these values into the rearranged formula:
[tex]\[ t = \frac{405}{300 \cdot (1 + 0.04t)} - 1 \][/tex]/ 0.04
From this relationship, we can solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{405}{300} - 1 ] / 0.04 \][/tex]
[tex]\[ t = \frac{405}{300} ] - 1 / 0.04 \][/tex]
[tex]\[ t = 35/3 years ] After performing the calculations, we find that: \[ t = 8.75 \][/tex]
Thus, the time required for Rs 300 to amount to Rs 405 at a rate of 4% per annum is [tex]\( 8.75 \)[/tex] years, which corresponds to
Answer: [tex]\( d \)[/tex] [tex]\(\ = \frac{35}{4}\)[/tex] years
[tex]\[ A = P(1 + rt) \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount (Rs 405)
- [tex]\( P \)[/tex] is the principal amount (Rs 300)
- [tex]\( r \)[/tex] is the annual interest rate (4% per year or 0.04 in decimal form)
- [tex]\( t \)[/tex] is the time in years
We need to rearrange this formula to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{A}{P \cdot (1 + rt)} - 1 \][/tex]/ r
Given the values:
- [tex]\( A = 405 \)[/tex]
- [tex]\( P = 300 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
Substitute these values into the rearranged formula:
[tex]\[ t = \frac{405}{300 \cdot (1 + 0.04t)} - 1 \][/tex]/ 0.04
From this relationship, we can solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{405}{300} - 1 ] / 0.04 \][/tex]
[tex]\[ t = \frac{405}{300} ] - 1 / 0.04 \][/tex]
[tex]\[ t = 35/3 years ] After performing the calculations, we find that: \[ t = 8.75 \][/tex]
Thus, the time required for Rs 300 to amount to Rs 405 at a rate of 4% per annum is [tex]\( 8.75 \)[/tex] years, which corresponds to
Answer: [tex]\( d \)[/tex] [tex]\(\ = \frac{35}{4}\)[/tex] years
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.