Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the time in which Rs 300 will amount to Rs 405 at an interest rate of 4%, we can use the simple interest formula. This formula is:
[tex]\[ A = P(1 + rt) \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount (Rs 405)
- [tex]\( P \)[/tex] is the principal amount (Rs 300)
- [tex]\( r \)[/tex] is the annual interest rate (4% per year or 0.04 in decimal form)
- [tex]\( t \)[/tex] is the time in years
We need to rearrange this formula to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{A}{P \cdot (1 + rt)} - 1 \][/tex]/ r
Given the values:
- [tex]\( A = 405 \)[/tex]
- [tex]\( P = 300 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
Substitute these values into the rearranged formula:
[tex]\[ t = \frac{405}{300 \cdot (1 + 0.04t)} - 1 \][/tex]/ 0.04
From this relationship, we can solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{405}{300} - 1 ] / 0.04 \][/tex]
[tex]\[ t = \frac{405}{300} ] - 1 / 0.04 \][/tex]
[tex]\[ t = 35/3 years ] After performing the calculations, we find that: \[ t = 8.75 \][/tex]
Thus, the time required for Rs 300 to amount to Rs 405 at a rate of 4% per annum is [tex]\( 8.75 \)[/tex] years, which corresponds to
Answer: [tex]\( d \)[/tex] [tex]\(\ = \frac{35}{4}\)[/tex] years
[tex]\[ A = P(1 + rt) \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount (Rs 405)
- [tex]\( P \)[/tex] is the principal amount (Rs 300)
- [tex]\( r \)[/tex] is the annual interest rate (4% per year or 0.04 in decimal form)
- [tex]\( t \)[/tex] is the time in years
We need to rearrange this formula to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{A}{P \cdot (1 + rt)} - 1 \][/tex]/ r
Given the values:
- [tex]\( A = 405 \)[/tex]
- [tex]\( P = 300 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
Substitute these values into the rearranged formula:
[tex]\[ t = \frac{405}{300 \cdot (1 + 0.04t)} - 1 \][/tex]/ 0.04
From this relationship, we can solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{405}{300} - 1 ] / 0.04 \][/tex]
[tex]\[ t = \frac{405}{300} ] - 1 / 0.04 \][/tex]
[tex]\[ t = 35/3 years ] After performing the calculations, we find that: \[ t = 8.75 \][/tex]
Thus, the time required for Rs 300 to amount to Rs 405 at a rate of 4% per annum is [tex]\( 8.75 \)[/tex] years, which corresponds to
Answer: [tex]\( d \)[/tex] [tex]\(\ = \frac{35}{4}\)[/tex] years
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.