Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the time in which Rs 300 will amount to Rs 405 at an interest rate of 4%, we can use the simple interest formula. This formula is:
[tex]\[ A = P(1 + rt) \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount (Rs 405)
- [tex]\( P \)[/tex] is the principal amount (Rs 300)
- [tex]\( r \)[/tex] is the annual interest rate (4% per year or 0.04 in decimal form)
- [tex]\( t \)[/tex] is the time in years
We need to rearrange this formula to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{A}{P \cdot (1 + rt)} - 1 \][/tex]/ r
Given the values:
- [tex]\( A = 405 \)[/tex]
- [tex]\( P = 300 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
Substitute these values into the rearranged formula:
[tex]\[ t = \frac{405}{300 \cdot (1 + 0.04t)} - 1 \][/tex]/ 0.04
From this relationship, we can solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{405}{300} - 1 ] / 0.04 \][/tex]
[tex]\[ t = \frac{405}{300} ] - 1 / 0.04 \][/tex]
[tex]\[ t = 35/3 years ] After performing the calculations, we find that: \[ t = 8.75 \][/tex]
Thus, the time required for Rs 300 to amount to Rs 405 at a rate of 4% per annum is [tex]\( 8.75 \)[/tex] years, which corresponds to
Answer: [tex]\( d \)[/tex] [tex]\(\ = \frac{35}{4}\)[/tex] years
[tex]\[ A = P(1 + rt) \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount (Rs 405)
- [tex]\( P \)[/tex] is the principal amount (Rs 300)
- [tex]\( r \)[/tex] is the annual interest rate (4% per year or 0.04 in decimal form)
- [tex]\( t \)[/tex] is the time in years
We need to rearrange this formula to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{A}{P \cdot (1 + rt)} - 1 \][/tex]/ r
Given the values:
- [tex]\( A = 405 \)[/tex]
- [tex]\( P = 300 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
Substitute these values into the rearranged formula:
[tex]\[ t = \frac{405}{300 \cdot (1 + 0.04t)} - 1 \][/tex]/ 0.04
From this relationship, we can solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{405}{300} - 1 ] / 0.04 \][/tex]
[tex]\[ t = \frac{405}{300} ] - 1 / 0.04 \][/tex]
[tex]\[ t = 35/3 years ] After performing the calculations, we find that: \[ t = 8.75 \][/tex]
Thus, the time required for Rs 300 to amount to Rs 405 at a rate of 4% per annum is [tex]\( 8.75 \)[/tex] years, which corresponds to
Answer: [tex]\( d \)[/tex] [tex]\(\ = \frac{35}{4}\)[/tex] years
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.