At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the system of equations given by:
[tex]\[ \begin{array}{l} 7x - 4y = -8 \\ y = \frac{3}{4}x - 3 \end{array} \][/tex]
we follow these steps:
1. Substitute the expression for [tex]\(y\)[/tex] from the second equation into the first equation:
The second equation gives [tex]\( y = \frac{3}{4}x - 3 \)[/tex].
Substitute [tex]\( y = \frac{3}{4}x - 3 \)[/tex] into the first equation:
[tex]\[ 7x - 4\left( \frac{3}{4}x - 3 \right) = -8 \][/tex]
2. Simplify the equation:
Distribute [tex]\( -4 \)[/tex] across the terms inside the parentheses:
[tex]\[ 7x - 4 \cdot \frac{3}{4}x + 4 \cdot 3 = -8 \][/tex]
This simplifies to:
[tex]\[ 7x - 3x + 12 = -8 \][/tex]
Combine like terms:
[tex]\[ 4x + 12 = -8 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex] by first subtracting 12 from both sides:
[tex]\[ 4x = -8 - 12 \][/tex]
[tex]\[ 4x = -20 \][/tex]
Divide both sides by 4:
[tex]\[ x = -5 \][/tex]
4. Substitute [tex]\( x \)[/tex] back into the second original equation to find [tex]\( y \)[/tex]:
Use the second equation [tex]\( y = \frac{3}{4}x - 3 \)[/tex]:
[tex]\[ y = \frac{3}{4}(-5) - 3 \][/tex]
Multiply:
[tex]\[ y = -\frac{15}{4} - 3 \][/tex]
Convert [tex]\(-3\)[/tex] to quarters:
[tex]\[ y = -\frac{15}{4} - \frac{12}{4} \][/tex]
Add the fractions:
[tex]\[ y = -\frac{27}{4} \][/tex]
Convert [tex]\(-\frac{27}{4}\)[/tex] to a decimal:
[tex]\[ y = -6.75 \][/tex]
Therefore, the solution to the system of equations is approximately:
[tex]\[ (x, y) = (-5.0, -6.75) \][/tex]
This is the point where the two equations intersect on the graph.
[tex]\[ \begin{array}{l} 7x - 4y = -8 \\ y = \frac{3}{4}x - 3 \end{array} \][/tex]
we follow these steps:
1. Substitute the expression for [tex]\(y\)[/tex] from the second equation into the first equation:
The second equation gives [tex]\( y = \frac{3}{4}x - 3 \)[/tex].
Substitute [tex]\( y = \frac{3}{4}x - 3 \)[/tex] into the first equation:
[tex]\[ 7x - 4\left( \frac{3}{4}x - 3 \right) = -8 \][/tex]
2. Simplify the equation:
Distribute [tex]\( -4 \)[/tex] across the terms inside the parentheses:
[tex]\[ 7x - 4 \cdot \frac{3}{4}x + 4 \cdot 3 = -8 \][/tex]
This simplifies to:
[tex]\[ 7x - 3x + 12 = -8 \][/tex]
Combine like terms:
[tex]\[ 4x + 12 = -8 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex] by first subtracting 12 from both sides:
[tex]\[ 4x = -8 - 12 \][/tex]
[tex]\[ 4x = -20 \][/tex]
Divide both sides by 4:
[tex]\[ x = -5 \][/tex]
4. Substitute [tex]\( x \)[/tex] back into the second original equation to find [tex]\( y \)[/tex]:
Use the second equation [tex]\( y = \frac{3}{4}x - 3 \)[/tex]:
[tex]\[ y = \frac{3}{4}(-5) - 3 \][/tex]
Multiply:
[tex]\[ y = -\frac{15}{4} - 3 \][/tex]
Convert [tex]\(-3\)[/tex] to quarters:
[tex]\[ y = -\frac{15}{4} - \frac{12}{4} \][/tex]
Add the fractions:
[tex]\[ y = -\frac{27}{4} \][/tex]
Convert [tex]\(-\frac{27}{4}\)[/tex] to a decimal:
[tex]\[ y = -6.75 \][/tex]
Therefore, the solution to the system of equations is approximately:
[tex]\[ (x, y) = (-5.0, -6.75) \][/tex]
This is the point where the two equations intersect on the graph.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.