Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, we need to find the original principal sum of money using the compound interest formula. Here are the step-by-step details:
1. Identify the given information:
- The amount after 2 years (A₂) is Rs. 1530.
- The amount after 3 years (A₃) is Rs. 1545.
2. Calculate the annual compound interest rate (r):
- Given that the sum grows from Rs. 1530 to Rs. 1545 in one year,
- The interest rate can be found using the formula:
[tex]\[ \left(1 + r\right) = \frac{A₃}{A₂} \][/tex]
- Plugging in the values:
[tex]\[ 1 + r = \frac{1545}{1530} \approx 1.0098039215686274 \][/tex]
- Solving for r:
[tex]\[ r \approx 1.0098039215686274 - 1 = 0.0098039215686274 \approx 0.98\% \][/tex]
3. Calculate the principal amount (P):
- We will use the compound interest formula for year 2:
[tex]\[ A₂ = P \left(1 + r\right)^2 \][/tex]
- Rearrange to solve for P:
[tex]\[ P = \frac{A₂}{\left(1 + r\right)^2} \][/tex]
- Substitute the values:
[tex]\[ P = \frac{1530}{\left(1.0098039215686274\right)^2} \][/tex]
- Simplifying this results in:
[tex]\[ P \approx \frac{1530}{1.019723254} \approx 1500.43547931002 \][/tex]
4. Round the principal amount to the nearest whole number:
- The principal amount is approximately Rs. 1500.43547931002, which, when rounded, results in Rs. 1500.
Thus, the original sum of money was:
c. Rs. 1500
1. Identify the given information:
- The amount after 2 years (A₂) is Rs. 1530.
- The amount after 3 years (A₃) is Rs. 1545.
2. Calculate the annual compound interest rate (r):
- Given that the sum grows from Rs. 1530 to Rs. 1545 in one year,
- The interest rate can be found using the formula:
[tex]\[ \left(1 + r\right) = \frac{A₃}{A₂} \][/tex]
- Plugging in the values:
[tex]\[ 1 + r = \frac{1545}{1530} \approx 1.0098039215686274 \][/tex]
- Solving for r:
[tex]\[ r \approx 1.0098039215686274 - 1 = 0.0098039215686274 \approx 0.98\% \][/tex]
3. Calculate the principal amount (P):
- We will use the compound interest formula for year 2:
[tex]\[ A₂ = P \left(1 + r\right)^2 \][/tex]
- Rearrange to solve for P:
[tex]\[ P = \frac{A₂}{\left(1 + r\right)^2} \][/tex]
- Substitute the values:
[tex]\[ P = \frac{1530}{\left(1.0098039215686274\right)^2} \][/tex]
- Simplifying this results in:
[tex]\[ P \approx \frac{1530}{1.019723254} \approx 1500.43547931002 \][/tex]
4. Round the principal amount to the nearest whole number:
- The principal amount is approximately Rs. 1500.43547931002, which, when rounded, results in Rs. 1500.
Thus, the original sum of money was:
c. Rs. 1500
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.