Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's analyze each set step-by-step:
### Part (i)
[tex]\[ A = \{ x \mid x \in I, x^2 \text{ is not positive} \} \][/tex]
1. Identify the elements of the set: The set [tex]\( A \)[/tex] contains elements [tex]\( x \)[/tex] such that [tex]\( x \)[/tex] is an integer ([tex]\( x \in I \)[/tex]) and [tex]\( x^2 \)[/tex] is not positive.
2. Analyze [tex]\( x^2 \)[/tex] for integers:
- For any integer [tex]\( x \)[/tex], [tex]\( x^2 \)[/tex] represents [tex]\( x \)[/tex] squared.
- The square of any real number, including integers, is always non-negative. This means [tex]\( x^2 \)[/tex] is always either zero or positive.
3. Determine the possibility: Since [tex]\( x^2 \)[/tex] cannot be less than zero for any integer, there is no integer [tex]\( x \)[/tex] for which [tex]\( x^2 \)[/tex] is not positive.
4. Conclusion: As there are no integers satisfying the condition that [tex]\( x^2 \)[/tex] is not positive, the set [tex]\( A \)[/tex] is empty.
Therefore, the set [tex]\( A \)[/tex] is an empty set.
### Part (ii)
[tex]\[ B = \{ b \mid b \in N, 2b + 1 \text{ is even} \} \][/tex]
1. Identify the elements of the set: The set [tex]\( B \)[/tex] contains elements [tex]\( b \)[/tex] such that [tex]\( b \)[/tex] is a natural number ([tex]\( b \in N \)[/tex]) and [tex]\( 2b + 1 \)[/tex] is even.
2. Analyze [tex]\( 2b + 1 \)[/tex] for natural numbers:
- For any natural number [tex]\( b \)[/tex], [tex]\( 2b \)[/tex] is always an even number (since multiplying an integer by 2 results in an even number).
- Adding 1 to any even number results in an odd number. Therefore, [tex]\( 2b + 1 \)[/tex] will always be odd.
3. Determine the possibility: Since [tex]\( 2b + 1 \)[/tex] is always odd for any natural number [tex]\( b \)[/tex], it can never be even.
4. Conclusion: There are no natural numbers [tex]\( b \)[/tex] for which [tex]\( 2b + 1 \)[/tex] is even, hence the set [tex]\( B \)[/tex] is empty.
Therefore, the set [tex]\( B \)[/tex] is an empty set.
Both sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are empty sets.
### Part (i)
[tex]\[ A = \{ x \mid x \in I, x^2 \text{ is not positive} \} \][/tex]
1. Identify the elements of the set: The set [tex]\( A \)[/tex] contains elements [tex]\( x \)[/tex] such that [tex]\( x \)[/tex] is an integer ([tex]\( x \in I \)[/tex]) and [tex]\( x^2 \)[/tex] is not positive.
2. Analyze [tex]\( x^2 \)[/tex] for integers:
- For any integer [tex]\( x \)[/tex], [tex]\( x^2 \)[/tex] represents [tex]\( x \)[/tex] squared.
- The square of any real number, including integers, is always non-negative. This means [tex]\( x^2 \)[/tex] is always either zero or positive.
3. Determine the possibility: Since [tex]\( x^2 \)[/tex] cannot be less than zero for any integer, there is no integer [tex]\( x \)[/tex] for which [tex]\( x^2 \)[/tex] is not positive.
4. Conclusion: As there are no integers satisfying the condition that [tex]\( x^2 \)[/tex] is not positive, the set [tex]\( A \)[/tex] is empty.
Therefore, the set [tex]\( A \)[/tex] is an empty set.
### Part (ii)
[tex]\[ B = \{ b \mid b \in N, 2b + 1 \text{ is even} \} \][/tex]
1. Identify the elements of the set: The set [tex]\( B \)[/tex] contains elements [tex]\( b \)[/tex] such that [tex]\( b \)[/tex] is a natural number ([tex]\( b \in N \)[/tex]) and [tex]\( 2b + 1 \)[/tex] is even.
2. Analyze [tex]\( 2b + 1 \)[/tex] for natural numbers:
- For any natural number [tex]\( b \)[/tex], [tex]\( 2b \)[/tex] is always an even number (since multiplying an integer by 2 results in an even number).
- Adding 1 to any even number results in an odd number. Therefore, [tex]\( 2b + 1 \)[/tex] will always be odd.
3. Determine the possibility: Since [tex]\( 2b + 1 \)[/tex] is always odd for any natural number [tex]\( b \)[/tex], it can never be even.
4. Conclusion: There are no natural numbers [tex]\( b \)[/tex] for which [tex]\( 2b + 1 \)[/tex] is even, hence the set [tex]\( B \)[/tex] is empty.
Therefore, the set [tex]\( B \)[/tex] is an empty set.
Both sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are empty sets.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.