At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To balance the chemical equation for the combustion of sugar, let's go through the steps meticulously.
The given chemical equation is:
[tex]\[ \text{C}_6\text{H}_{12}\text{O}_6(s) + \text{O}_2(g) \rightarrow \text{CO}_2(g) + \text{H}_2\text{O}(l) \][/tex]
### Step-by-Step Balancing:
1. Identify the number of each type of atom in the reactants and products:
- Reactants:
- Carbon (C): 6 (from C₆H₁₂O₆)
- Hydrogen (H): 12 (from C₆H₁₂O₆)
- Oxygen (O): 6 (from C₆H₁₂O₆) and part from O₂ (unknown amount)
- Products:
- Carbon (C): 1 (from [tex]\(\text{CO}_2\)[/tex])
- Hydrogen (H): 2 (from [tex]\(\text{H}_2\text{O}\)[/tex])
- Oxygen (O): 2 (from [tex]\(\text{CO}_2\)[/tex]) and 1 (from [tex]\(\text{H}_2\text{O}\)[/tex])
2. Balancing carbon atoms:
- We have 6 carbons on the left side from C₆H₁₂O₆
- Each [tex]\(\text{CO}_2\)[/tex] molecule contains 1 carbon atom
- Therefore, we need 6 [tex]\(\text{CO}_2\)[/tex] molecules to balance the carbon atoms.
[tex]\[ \text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \rightarrow 6\text{CO}_2 + \text{H}_2\text{O} \][/tex]
3. Balancing hydrogen atoms:
- We have 12 hydrogens on the left side from C₆H₁₂O₆
- Each [tex]\(\text{H}_2\text{O}\)[/tex] molecule contains 2 hydrogen atoms
- Therefore, we need 6 [tex]\(\text{H}_2\text{O}\)[/tex] molecules to balance the hydrogen atoms.
[tex]\[ \text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \][/tex]
4. Balancing oxygen atoms:
- On the right side:
- We get 12 oxygens from 6 [tex]\(\text{CO}_2\)[/tex] (since each [tex]\(\text{CO}_2\)[/tex] has 2 oxygens)
- We get 6 oxygens from 6 [tex]\(\text{H}_2\text{O}\)[/tex] (since each [tex]\(\text{H}_2\text{O}\)[/tex] has 1 oxygen)
- Total oxygens in products = 12 (from [tex]\(\text{CO}_2\)[/tex]) + 6 (from [tex]\(\text{H}_2\text{O}\)[/tex]) = 18 oxygens
- On the left side, we already have 6 oxygens from C₆H₁₂O₆. Therefore, we need an additional 12 oxygens from [tex]\(\text{O}_2\)[/tex].
- Each [tex]\(\text{O}_2\)[/tex] molecule has 2 oxygens. Therefore, we need 12/2 = 6 [tex]\(\text{O}_2\)[/tex] molecules.
[tex]\[ \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \][/tex]
Therefore, the correct sequence of coefficients to balance the equation is:
[tex]\[ 1, 6, 6, 6 \][/tex]
The answer is:
[tex]\[ \boxed{1, 6, 6, 6} \][/tex]
The given chemical equation is:
[tex]\[ \text{C}_6\text{H}_{12}\text{O}_6(s) + \text{O}_2(g) \rightarrow \text{CO}_2(g) + \text{H}_2\text{O}(l) \][/tex]
### Step-by-Step Balancing:
1. Identify the number of each type of atom in the reactants and products:
- Reactants:
- Carbon (C): 6 (from C₆H₁₂O₆)
- Hydrogen (H): 12 (from C₆H₁₂O₆)
- Oxygen (O): 6 (from C₆H₁₂O₆) and part from O₂ (unknown amount)
- Products:
- Carbon (C): 1 (from [tex]\(\text{CO}_2\)[/tex])
- Hydrogen (H): 2 (from [tex]\(\text{H}_2\text{O}\)[/tex])
- Oxygen (O): 2 (from [tex]\(\text{CO}_2\)[/tex]) and 1 (from [tex]\(\text{H}_2\text{O}\)[/tex])
2. Balancing carbon atoms:
- We have 6 carbons on the left side from C₆H₁₂O₆
- Each [tex]\(\text{CO}_2\)[/tex] molecule contains 1 carbon atom
- Therefore, we need 6 [tex]\(\text{CO}_2\)[/tex] molecules to balance the carbon atoms.
[tex]\[ \text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \rightarrow 6\text{CO}_2 + \text{H}_2\text{O} \][/tex]
3. Balancing hydrogen atoms:
- We have 12 hydrogens on the left side from C₆H₁₂O₆
- Each [tex]\(\text{H}_2\text{O}\)[/tex] molecule contains 2 hydrogen atoms
- Therefore, we need 6 [tex]\(\text{H}_2\text{O}\)[/tex] molecules to balance the hydrogen atoms.
[tex]\[ \text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \][/tex]
4. Balancing oxygen atoms:
- On the right side:
- We get 12 oxygens from 6 [tex]\(\text{CO}_2\)[/tex] (since each [tex]\(\text{CO}_2\)[/tex] has 2 oxygens)
- We get 6 oxygens from 6 [tex]\(\text{H}_2\text{O}\)[/tex] (since each [tex]\(\text{H}_2\text{O}\)[/tex] has 1 oxygen)
- Total oxygens in products = 12 (from [tex]\(\text{CO}_2\)[/tex]) + 6 (from [tex]\(\text{H}_2\text{O}\)[/tex]) = 18 oxygens
- On the left side, we already have 6 oxygens from C₆H₁₂O₆. Therefore, we need an additional 12 oxygens from [tex]\(\text{O}_2\)[/tex].
- Each [tex]\(\text{O}_2\)[/tex] molecule has 2 oxygens. Therefore, we need 12/2 = 6 [tex]\(\text{O}_2\)[/tex] molecules.
[tex]\[ \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \][/tex]
Therefore, the correct sequence of coefficients to balance the equation is:
[tex]\[ 1, 6, 6, 6 \][/tex]
The answer is:
[tex]\[ \boxed{1, 6, 6, 6} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.