Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To calculate the atom economy for the production of sulfur dioxide ([tex]$SO_2$[/tex]) from the reaction of copper sulfide ([tex]$Cu_2S$[/tex]) with oxygen ([tex]$O_2$[/tex]), you can follow these steps:
1. Write down the balanced chemical equation:
[tex]\[ Cu_2S + O_2 \rightarrow 2Cu + SO_2 \][/tex]
2. Identify the molar masses (relative formula masses) of the reactants and products:
- [tex]$Cu_2S$[/tex] has a molar mass of 159.0 g/mol
- [tex]$O_2$[/tex] has a molar mass of 32.0 g/mol
- [tex]$SO_2$[/tex] has a molar mass of 64.0 g/mol
3. Calculate the total molar mass of the desired product ([tex]$SO_2$[/tex]) produced:
In this reaction, 1 mole of [tex]$Cu_2S$[/tex] produces 1 mole of [tex]$SO_2$[/tex].
- Molar mass of [tex]$SO_2$[/tex]: 64.0 g/mol
4. Calculate the atom economy using the formula:
[tex]\[ \text{Atom Economy} = \left( \frac{\text{Molar mass of desired product}}{\text{Molar mass of all reactants}} \right) \times 100 \][/tex]
Here, we only need to consider the mass of [tex]$Cu_2S$[/tex] as it is the compound from which [tex]$SO_2$[/tex] is derived directly.
[tex]\[ \text{Atom Economy} = \left( \frac{64.0}{159.0} \right) \times 100 \][/tex]
5. Perform the division and multiplication to find the atom economy:
[tex]\[ \text{Atom Economy} = \left( \frac{64.0}{159.0} \right) \times 100 \approx 40.25\% \][/tex]
6. Round the answer to two significant figures:
The atom economy for producing sulfur dioxide is approximately 40%.
Thus, the atom economy for the production of sulfur dioxide ([tex]$SO_2$[/tex]) in this reaction is 40.25%, and when rounded to two significant figures, it is 40%.
1. Write down the balanced chemical equation:
[tex]\[ Cu_2S + O_2 \rightarrow 2Cu + SO_2 \][/tex]
2. Identify the molar masses (relative formula masses) of the reactants and products:
- [tex]$Cu_2S$[/tex] has a molar mass of 159.0 g/mol
- [tex]$O_2$[/tex] has a molar mass of 32.0 g/mol
- [tex]$SO_2$[/tex] has a molar mass of 64.0 g/mol
3. Calculate the total molar mass of the desired product ([tex]$SO_2$[/tex]) produced:
In this reaction, 1 mole of [tex]$Cu_2S$[/tex] produces 1 mole of [tex]$SO_2$[/tex].
- Molar mass of [tex]$SO_2$[/tex]: 64.0 g/mol
4. Calculate the atom economy using the formula:
[tex]\[ \text{Atom Economy} = \left( \frac{\text{Molar mass of desired product}}{\text{Molar mass of all reactants}} \right) \times 100 \][/tex]
Here, we only need to consider the mass of [tex]$Cu_2S$[/tex] as it is the compound from which [tex]$SO_2$[/tex] is derived directly.
[tex]\[ \text{Atom Economy} = \left( \frac{64.0}{159.0} \right) \times 100 \][/tex]
5. Perform the division and multiplication to find the atom economy:
[tex]\[ \text{Atom Economy} = \left( \frac{64.0}{159.0} \right) \times 100 \approx 40.25\% \][/tex]
6. Round the answer to two significant figures:
The atom economy for producing sulfur dioxide is approximately 40%.
Thus, the atom economy for the production of sulfur dioxide ([tex]$SO_2$[/tex]) in this reaction is 40.25%, and when rounded to two significant figures, it is 40%.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.