Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To prove that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal given the condition [tex]\(|\vec{a} - 3 \vec{b}| = |\vec{a} + 3 \vec{b}|\)[/tex], we can follow these steps:
1. Square both sides of the equation:
Given:
[tex]\[ |\vec{a} - 3 \vec{b}| = |\vec{a} + 3 \vec{b}| \][/tex]
Squaring both sides to eliminate the absolute value:
[tex]\[ (\vec{a} - 3 \vec{b}) \cdot (\vec{a} - 3 \vec{b}) = (\vec{a} + 3 \vec{b}) \cdot (\vec{a} + 3 \vec{b}) \][/tex]
2. Expand both sides using the dot product property:
For the left side:
[tex]\[ (\vec{a} - 3 \vec{b}) \cdot (\vec{a} - 3 \vec{b}) = \vec{a} \cdot \vec{a} - 2 (\vec{a} \cdot 3 \vec{b}) + (3 \vec{b}) \cdot (3 \vec{b}) \][/tex]
Simplifying further:
[tex]\[ \vec{a} \cdot \vec{a} - 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
For the right side:
[tex]\[ (\vec{a} + 3 \vec{b}) \cdot (\vec{a} + 3 \vec{b}) = \vec{a} \cdot \vec{a} + 2 (\vec{a} \cdot 3 \vec{b}) + (3 \vec{b}) \cdot (3 \vec{b}) \][/tex]
Simplifying further:
[tex]\[ \vec{a} \cdot \vec{a} + 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
3. Set the expanded expressions equal and cancel common terms:
Equate the two expanded sides:
[tex]\[ \vec{a} \cdot \vec{a} - 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) = \vec{a} \cdot \vec{a} + 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
Simplifying the equation by cancelling out the common terms [tex]\(\vec{a} \cdot \vec{a}\)[/tex] and [tex]\(9 (\vec{b} \cdot \vec{b})\)[/tex] on both sides:
[tex]\[ -6 (\vec{a} \cdot \vec{b}) = 6 (\vec{a} \cdot \vec{b}) \][/tex]
4. Solve for the dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex]:
Add [tex]\(6 (\vec{a} \cdot \vec{b})\)[/tex] to both sides to isolate 0:
[tex]\[ -6 (\vec{a} \cdot \vec{b}) + 6 (\vec{a} \cdot \vec{b}) = 6 (\vec{a} \cdot \vec{b}) + 6 (\vec{a} \cdot \vec{b}) \][/tex]
Simplifies to:
[tex]\[ 0 = 12 (\vec{a} \cdot \vec{b}) \][/tex]
Thus:
[tex]\[ \vec{a} \cdot \vec{b} = 0 \][/tex]
5. Conclusion:
The dot product [tex]\(\vec{a} \cdot \vec{b} = 0\)[/tex] implies that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal vectors.
Therefore, we have proven that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal.
1. Square both sides of the equation:
Given:
[tex]\[ |\vec{a} - 3 \vec{b}| = |\vec{a} + 3 \vec{b}| \][/tex]
Squaring both sides to eliminate the absolute value:
[tex]\[ (\vec{a} - 3 \vec{b}) \cdot (\vec{a} - 3 \vec{b}) = (\vec{a} + 3 \vec{b}) \cdot (\vec{a} + 3 \vec{b}) \][/tex]
2. Expand both sides using the dot product property:
For the left side:
[tex]\[ (\vec{a} - 3 \vec{b}) \cdot (\vec{a} - 3 \vec{b}) = \vec{a} \cdot \vec{a} - 2 (\vec{a} \cdot 3 \vec{b}) + (3 \vec{b}) \cdot (3 \vec{b}) \][/tex]
Simplifying further:
[tex]\[ \vec{a} \cdot \vec{a} - 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
For the right side:
[tex]\[ (\vec{a} + 3 \vec{b}) \cdot (\vec{a} + 3 \vec{b}) = \vec{a} \cdot \vec{a} + 2 (\vec{a} \cdot 3 \vec{b}) + (3 \vec{b}) \cdot (3 \vec{b}) \][/tex]
Simplifying further:
[tex]\[ \vec{a} \cdot \vec{a} + 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
3. Set the expanded expressions equal and cancel common terms:
Equate the two expanded sides:
[tex]\[ \vec{a} \cdot \vec{a} - 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) = \vec{a} \cdot \vec{a} + 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
Simplifying the equation by cancelling out the common terms [tex]\(\vec{a} \cdot \vec{a}\)[/tex] and [tex]\(9 (\vec{b} \cdot \vec{b})\)[/tex] on both sides:
[tex]\[ -6 (\vec{a} \cdot \vec{b}) = 6 (\vec{a} \cdot \vec{b}) \][/tex]
4. Solve for the dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex]:
Add [tex]\(6 (\vec{a} \cdot \vec{b})\)[/tex] to both sides to isolate 0:
[tex]\[ -6 (\vec{a} \cdot \vec{b}) + 6 (\vec{a} \cdot \vec{b}) = 6 (\vec{a} \cdot \vec{b}) + 6 (\vec{a} \cdot \vec{b}) \][/tex]
Simplifies to:
[tex]\[ 0 = 12 (\vec{a} \cdot \vec{b}) \][/tex]
Thus:
[tex]\[ \vec{a} \cdot \vec{b} = 0 \][/tex]
5. Conclusion:
The dot product [tex]\(\vec{a} \cdot \vec{b} = 0\)[/tex] implies that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal vectors.
Therefore, we have proven that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.