At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the common ratio of the given geometric sequence [tex]\(6, 15, \frac{75}{2}, \frac{375}{4}, \ldots\)[/tex], we follow these steps:
1. Identify the first few terms of the sequence:
- The first term [tex]\(a_1\)[/tex] is [tex]\(6\)[/tex].
- The second term [tex]\(a_2\)[/tex] is [tex]\(15\)[/tex].
- The third term [tex]\(a_3\)[/tex] is [tex]\(\frac{75}{2}\)[/tex].
- The fourth term [tex]\(a_4\)[/tex] is [tex]\(\frac{375}{4}\)[/tex].
2. The common ratio [tex]\(r\)[/tex] in a geometric sequence is calculated by dividing any term by its preceding term. We calculate the common ratio between each pair of successive terms:
- For [tex]\(a_2\)[/tex] and [tex]\(a_1\)[/tex]:
[tex]\[ r = \frac{a_2}{a_1} = \frac{15}{6} = 2.5 \][/tex]
- For [tex]\(a_3\)[/tex] and [tex]\(a_2\)[/tex]:
[tex]\[ r = \frac{a_3}{a_2} = \frac{\frac{75}{2}}{15} = \frac{75}{2 \times 15} = \frac{75}{30} = 2.5 \][/tex]
- For [tex]\(a_4\)[/tex] and [tex]\(a_3\)[/tex]:
[tex]\[ r = \frac{a_4}{a_3} = \frac{\frac{375}{4}}{\frac{75}{2}} = \frac{375 \times 2}{4 \times 75} = \frac{750}{300} = 2.5 \][/tex]
3. Since the common ratio [tex]\(r\)[/tex] is consistent between each pair of successive terms and equals [tex]\(2.5\)[/tex], we conclude that the common ratio of the given geometric sequence is:
[tex]\[ r = 2.5 \][/tex]
Thus, the option [tex]\( r = \frac{5}{2} \)[/tex] matches the calculated common ratio.
1. Identify the first few terms of the sequence:
- The first term [tex]\(a_1\)[/tex] is [tex]\(6\)[/tex].
- The second term [tex]\(a_2\)[/tex] is [tex]\(15\)[/tex].
- The third term [tex]\(a_3\)[/tex] is [tex]\(\frac{75}{2}\)[/tex].
- The fourth term [tex]\(a_4\)[/tex] is [tex]\(\frac{375}{4}\)[/tex].
2. The common ratio [tex]\(r\)[/tex] in a geometric sequence is calculated by dividing any term by its preceding term. We calculate the common ratio between each pair of successive terms:
- For [tex]\(a_2\)[/tex] and [tex]\(a_1\)[/tex]:
[tex]\[ r = \frac{a_2}{a_1} = \frac{15}{6} = 2.5 \][/tex]
- For [tex]\(a_3\)[/tex] and [tex]\(a_2\)[/tex]:
[tex]\[ r = \frac{a_3}{a_2} = \frac{\frac{75}{2}}{15} = \frac{75}{2 \times 15} = \frac{75}{30} = 2.5 \][/tex]
- For [tex]\(a_4\)[/tex] and [tex]\(a_3\)[/tex]:
[tex]\[ r = \frac{a_4}{a_3} = \frac{\frac{375}{4}}{\frac{75}{2}} = \frac{375 \times 2}{4 \times 75} = \frac{750}{300} = 2.5 \][/tex]
3. Since the common ratio [tex]\(r\)[/tex] is consistent between each pair of successive terms and equals [tex]\(2.5\)[/tex], we conclude that the common ratio of the given geometric sequence is:
[tex]\[ r = 2.5 \][/tex]
Thus, the option [tex]\( r = \frac{5}{2} \)[/tex] matches the calculated common ratio.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.