Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Determine the slope of each side of the quadrilateral whose vertices are [tex]\( A(5, 6) \)[/tex], [tex]\( B(13, 6) \)[/tex], [tex]\( C(11, 2) \)[/tex], and [tex]\( D(1, 2) \)[/tex].

What kind of quadrilateral is it?


Sagot :

To determine the type of quadrilateral and its slopes, let's proceed with step-by-step calculations.

### Step 1: Determine the slopes of each side

To find the slope of a line segment between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], we use the formula:
[tex]\[ \text{slope} = \frac{(y_2 - y_1)}{(x_2 - x_1)} \][/tex]

#### Slope of segment AB:
Points [tex]\(A(5, 6)\)[/tex] and [tex]\(B(13, 6)\)[/tex]
[tex]\[ \text{slope}_{AB} = \frac{(6 - 6)}{(13 - 5)} = \frac{0}{8} = 0 \][/tex]

#### Slope of segment BC:
Points [tex]\(B(13, 6)\)[/tex] and [tex]\(C(11, 2)\)[/tex]
[tex]\[ \text{slope}_{BC} = \frac{(2 - 6)}{(11 - 13)} = \frac{-4}{-2} = 2 \][/tex]

#### Slope of segment CD:
Points [tex]\(C(11, 2)\)[/tex] and [tex]\(D(1, 2)\)[/tex]
[tex]\[ \text{slope}_{CD} = \frac{(2 - 2)}{(1 - 11)} = \frac{0}{-10} = 0 \][/tex]

#### Slope of segment DA:
Points [tex]\(D(1, 2)\)[/tex] and [tex]\(A(5, 6)\)[/tex]
[tex]\[ \text{slope}_{DA} = \frac{(6 - 2)}{(5 - 1)} = \frac{4}{4} = 1 \][/tex]

So, the slopes of the sides are:
- [tex]\( \text{slope}_{AB} = 0 \)[/tex]
- [tex]\( \text{slope}_{BC} = 2 \)[/tex]
- [tex]\( \text{slope}_{CD} = 0 \)[/tex]
- [tex]\( \text{slope}_{DA} = 1 \)[/tex]

### Step 2: Analyze the slopes to determine the type of the quadrilateral

Given the slopes:
- [tex]\( \text{slope}_{AB} = 0 \)[/tex]
- [tex]\( \text{slope}_{BC} = 2 \)[/tex]
- [tex]\( \text{slope}_{CD} = -0 \)[/tex]
- [tex]\( \text{slope}_{DA} = 1 \)[/tex]

We see that:
- Opposite sides [tex]\(AB\)[/tex] and [tex]\(CD\)[/tex] are horizontal (slopes of 0 and -0 respectively).
- The other pair of sides, [tex]\(BC\)[/tex] and [tex]\(DA\)[/tex], have different slopes (2 and 1 respectively).

Since not all slopes are equal, and because the slopes do not indicate pairs of parallel and equal-length sides (which would verify if it is a rectangle or square), the quadrilateral cannot be a rectangle or a square.

### Final Conclusion:
The quadrilateral with given vertices [tex]\(A(5, 6)\)[/tex], [tex]\(B(13, 6)\)[/tex], [tex]\(C(11, 2)\)[/tex], and [tex]\(D(1, 2)\)[/tex] is an Other Quadrilateral.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.