At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we'll go step by step.
1. Understand the relationship:
- The problem states that [tex]\( y \)[/tex] is directly proportional to [tex]\( x^2 \)[/tex]. Mathematically, this can be written as:
[tex]\[ y = k \cdot x^2 \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality.
2. Find the constant of proportionality [tex]\( k \)[/tex]:
- We're given that [tex]\( y = 10 \)[/tex] when [tex]\( x = 2 \)[/tex]. Substituting these values into the equation, we get:
[tex]\[ 10 = k \cdot 2^2 \][/tex]
- Simplify the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 10 = k \cdot 4 \][/tex]
[tex]\[ k = \frac{10}{4} \][/tex]
[tex]\[ k = 2.5 \][/tex]
3. Double the value of [tex]\( x \)[/tex]:
- We need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is doubled. If [tex]\( x \)[/tex] is initially 2, then doubling it gives:
[tex]\[ x_{\text{new}} = 2 \times 2 = 4 \][/tex]
4. Calculate the new value of [tex]\( y \)[/tex]:
- Substitute [tex]\( x_{\text{new}} = 4 \)[/tex] back into the proportionality equation:
[tex]\[ y_{\text{new}} = k \cdot x_{\text{new}}^2 \][/tex]
- Using [tex]\( k = 2.5 \)[/tex] and [tex]\( x_{\text{new}} = 4 \)[/tex]:
[tex]\[ y_{\text{new}} = 2.5 \cdot 4^2 \][/tex]
[tex]\[ y_{\text{new}} = 2.5 \cdot 16 \][/tex]
[tex]\[ y_{\text{new}} = 40 \][/tex]
Hence, when the value of [tex]\( x \)[/tex] is doubled, the value of [tex]\( y \)[/tex] becomes 40.
1. Understand the relationship:
- The problem states that [tex]\( y \)[/tex] is directly proportional to [tex]\( x^2 \)[/tex]. Mathematically, this can be written as:
[tex]\[ y = k \cdot x^2 \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality.
2. Find the constant of proportionality [tex]\( k \)[/tex]:
- We're given that [tex]\( y = 10 \)[/tex] when [tex]\( x = 2 \)[/tex]. Substituting these values into the equation, we get:
[tex]\[ 10 = k \cdot 2^2 \][/tex]
- Simplify the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 10 = k \cdot 4 \][/tex]
[tex]\[ k = \frac{10}{4} \][/tex]
[tex]\[ k = 2.5 \][/tex]
3. Double the value of [tex]\( x \)[/tex]:
- We need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is doubled. If [tex]\( x \)[/tex] is initially 2, then doubling it gives:
[tex]\[ x_{\text{new}} = 2 \times 2 = 4 \][/tex]
4. Calculate the new value of [tex]\( y \)[/tex]:
- Substitute [tex]\( x_{\text{new}} = 4 \)[/tex] back into the proportionality equation:
[tex]\[ y_{\text{new}} = k \cdot x_{\text{new}}^2 \][/tex]
- Using [tex]\( k = 2.5 \)[/tex] and [tex]\( x_{\text{new}} = 4 \)[/tex]:
[tex]\[ y_{\text{new}} = 2.5 \cdot 4^2 \][/tex]
[tex]\[ y_{\text{new}} = 2.5 \cdot 16 \][/tex]
[tex]\[ y_{\text{new}} = 40 \][/tex]
Hence, when the value of [tex]\( x \)[/tex] is doubled, the value of [tex]\( y \)[/tex] becomes 40.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.