Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we'll go step by step.
1. Understand the relationship:
- The problem states that [tex]\( y \)[/tex] is directly proportional to [tex]\( x^2 \)[/tex]. Mathematically, this can be written as:
[tex]\[ y = k \cdot x^2 \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality.
2. Find the constant of proportionality [tex]\( k \)[/tex]:
- We're given that [tex]\( y = 10 \)[/tex] when [tex]\( x = 2 \)[/tex]. Substituting these values into the equation, we get:
[tex]\[ 10 = k \cdot 2^2 \][/tex]
- Simplify the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 10 = k \cdot 4 \][/tex]
[tex]\[ k = \frac{10}{4} \][/tex]
[tex]\[ k = 2.5 \][/tex]
3. Double the value of [tex]\( x \)[/tex]:
- We need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is doubled. If [tex]\( x \)[/tex] is initially 2, then doubling it gives:
[tex]\[ x_{\text{new}} = 2 \times 2 = 4 \][/tex]
4. Calculate the new value of [tex]\( y \)[/tex]:
- Substitute [tex]\( x_{\text{new}} = 4 \)[/tex] back into the proportionality equation:
[tex]\[ y_{\text{new}} = k \cdot x_{\text{new}}^2 \][/tex]
- Using [tex]\( k = 2.5 \)[/tex] and [tex]\( x_{\text{new}} = 4 \)[/tex]:
[tex]\[ y_{\text{new}} = 2.5 \cdot 4^2 \][/tex]
[tex]\[ y_{\text{new}} = 2.5 \cdot 16 \][/tex]
[tex]\[ y_{\text{new}} = 40 \][/tex]
Hence, when the value of [tex]\( x \)[/tex] is doubled, the value of [tex]\( y \)[/tex] becomes 40.
1. Understand the relationship:
- The problem states that [tex]\( y \)[/tex] is directly proportional to [tex]\( x^2 \)[/tex]. Mathematically, this can be written as:
[tex]\[ y = k \cdot x^2 \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality.
2. Find the constant of proportionality [tex]\( k \)[/tex]:
- We're given that [tex]\( y = 10 \)[/tex] when [tex]\( x = 2 \)[/tex]. Substituting these values into the equation, we get:
[tex]\[ 10 = k \cdot 2^2 \][/tex]
- Simplify the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 10 = k \cdot 4 \][/tex]
[tex]\[ k = \frac{10}{4} \][/tex]
[tex]\[ k = 2.5 \][/tex]
3. Double the value of [tex]\( x \)[/tex]:
- We need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is doubled. If [tex]\( x \)[/tex] is initially 2, then doubling it gives:
[tex]\[ x_{\text{new}} = 2 \times 2 = 4 \][/tex]
4. Calculate the new value of [tex]\( y \)[/tex]:
- Substitute [tex]\( x_{\text{new}} = 4 \)[/tex] back into the proportionality equation:
[tex]\[ y_{\text{new}} = k \cdot x_{\text{new}}^2 \][/tex]
- Using [tex]\( k = 2.5 \)[/tex] and [tex]\( x_{\text{new}} = 4 \)[/tex]:
[tex]\[ y_{\text{new}} = 2.5 \cdot 4^2 \][/tex]
[tex]\[ y_{\text{new}} = 2.5 \cdot 16 \][/tex]
[tex]\[ y_{\text{new}} = 40 \][/tex]
Hence, when the value of [tex]\( x \)[/tex] is doubled, the value of [tex]\( y \)[/tex] becomes 40.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.