Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the area bounded by the curves [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex], we need to follow these steps:
1. Identify the Points of Intersection
- First, we need to find the points where the two curves intersect. This means setting the two equations equal to each other and solving for [tex]\( y \)[/tex]:
[tex]\[ y^2 = -5y - 6 \][/tex]
- Rearrange this equation to form a standard quadratic equation:
[tex]\[ y^2 + 5y + 6 = 0 \][/tex]
- Solving this quadratic equation, we find the roots are:
[tex]\[ y = -3 \quad \text{and} \quad y = -2 \][/tex]
- Therefore, the curves intersect at [tex]\( y = -3 \)[/tex] and [tex]\( y = -2 \)[/tex].
2. Set Up the Integral
- The area between the curves can be determined by integrating the difference of the functions [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex] with respect to [tex]\( y \)[/tex] over the interval from [tex]\( y = -3 \)[/tex] to [tex]\( y = -2 \)[/tex].
- The integral we need to evaluate is:
[tex]\[ \int_{-3}^{-2} (y^2 - (-5y - 6)) \, dy \][/tex]
- Simplify the integrand:
[tex]\[ \int_{-3}^{-2} (y^2 + 5y + 6) \, dy \][/tex]
3. Evaluate the Integral
- Find the antiderivative of the integrand:
[tex]\[ \int (y^2 + 5y + 6) \, dy = \frac{y^3}{3} + \frac{5y^2}{2} + 6y + C \][/tex]
- Evaluate the antiderivative at the bounds:
[tex]\[ \left[ \frac{-2^3}{3} + \frac{5(-2)^2}{2} + 6(-2) \right] - \left[ \frac{-3^3}{3} + \frac{5(-3)^2}{2} + 6(-3) \right] \][/tex]
4. Substitute and Calculate
- First, calculate at [tex]\( y = -2 \)[/tex]:
[tex]\[ \left[ \frac{(-2)^3}{3} + \frac{5(-2)^2}{2} + 6(-2) \right] = \left[ \frac{-8}{3} + \frac{20}{2} - 12 \right] = \left[ \frac{-8}{3} + 10 - 12 \right] = \left[ \frac{-8}{3} - 2 \right] = \frac{-8}{3} - \frac{6}{3} = \frac{-14}{3} \][/tex]
- Then, calculate at [tex]\( y = -3 \)[/tex]:
[tex]\[ \left[ \frac{(-3)^3}{3} + \frac{5(-3)^2}{2} + 6(-3) \right] = \left[ \frac{-27}{3} + \frac{45}{2} - 18 \right] = \left[ -9 + 22.5 - 18 \right] = \left[ -9 + 4.5 \right] = -4.5 \][/tex]
- Now, subtract these values:
[tex]\[ \frac{-14}{3} - (-4.5) = \frac{-14}{3} + \frac{9}{2} = \frac{-28 + 27}{6} = \frac{-1}{6} \][/tex]
Therefore, the area bounded by the curves [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex] is [tex]\( -\frac{1}{6} \)[/tex] or approximately -0.1667 (considering the integration accuracy).
1. Identify the Points of Intersection
- First, we need to find the points where the two curves intersect. This means setting the two equations equal to each other and solving for [tex]\( y \)[/tex]:
[tex]\[ y^2 = -5y - 6 \][/tex]
- Rearrange this equation to form a standard quadratic equation:
[tex]\[ y^2 + 5y + 6 = 0 \][/tex]
- Solving this quadratic equation, we find the roots are:
[tex]\[ y = -3 \quad \text{and} \quad y = -2 \][/tex]
- Therefore, the curves intersect at [tex]\( y = -3 \)[/tex] and [tex]\( y = -2 \)[/tex].
2. Set Up the Integral
- The area between the curves can be determined by integrating the difference of the functions [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex] with respect to [tex]\( y \)[/tex] over the interval from [tex]\( y = -3 \)[/tex] to [tex]\( y = -2 \)[/tex].
- The integral we need to evaluate is:
[tex]\[ \int_{-3}^{-2} (y^2 - (-5y - 6)) \, dy \][/tex]
- Simplify the integrand:
[tex]\[ \int_{-3}^{-2} (y^2 + 5y + 6) \, dy \][/tex]
3. Evaluate the Integral
- Find the antiderivative of the integrand:
[tex]\[ \int (y^2 + 5y + 6) \, dy = \frac{y^3}{3} + \frac{5y^2}{2} + 6y + C \][/tex]
- Evaluate the antiderivative at the bounds:
[tex]\[ \left[ \frac{-2^3}{3} + \frac{5(-2)^2}{2} + 6(-2) \right] - \left[ \frac{-3^3}{3} + \frac{5(-3)^2}{2} + 6(-3) \right] \][/tex]
4. Substitute and Calculate
- First, calculate at [tex]\( y = -2 \)[/tex]:
[tex]\[ \left[ \frac{(-2)^3}{3} + \frac{5(-2)^2}{2} + 6(-2) \right] = \left[ \frac{-8}{3} + \frac{20}{2} - 12 \right] = \left[ \frac{-8}{3} + 10 - 12 \right] = \left[ \frac{-8}{3} - 2 \right] = \frac{-8}{3} - \frac{6}{3} = \frac{-14}{3} \][/tex]
- Then, calculate at [tex]\( y = -3 \)[/tex]:
[tex]\[ \left[ \frac{(-3)^3}{3} + \frac{5(-3)^2}{2} + 6(-3) \right] = \left[ \frac{-27}{3} + \frac{45}{2} - 18 \right] = \left[ -9 + 22.5 - 18 \right] = \left[ -9 + 4.5 \right] = -4.5 \][/tex]
- Now, subtract these values:
[tex]\[ \frac{-14}{3} - (-4.5) = \frac{-14}{3} + \frac{9}{2} = \frac{-28 + 27}{6} = \frac{-1}{6} \][/tex]
Therefore, the area bounded by the curves [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex] is [tex]\( -\frac{1}{6} \)[/tex] or approximately -0.1667 (considering the integration accuracy).
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.