Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the area bounded by the curves [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex], we need to follow these steps:
1. Identify the Points of Intersection
- First, we need to find the points where the two curves intersect. This means setting the two equations equal to each other and solving for [tex]\( y \)[/tex]:
[tex]\[ y^2 = -5y - 6 \][/tex]
- Rearrange this equation to form a standard quadratic equation:
[tex]\[ y^2 + 5y + 6 = 0 \][/tex]
- Solving this quadratic equation, we find the roots are:
[tex]\[ y = -3 \quad \text{and} \quad y = -2 \][/tex]
- Therefore, the curves intersect at [tex]\( y = -3 \)[/tex] and [tex]\( y = -2 \)[/tex].
2. Set Up the Integral
- The area between the curves can be determined by integrating the difference of the functions [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex] with respect to [tex]\( y \)[/tex] over the interval from [tex]\( y = -3 \)[/tex] to [tex]\( y = -2 \)[/tex].
- The integral we need to evaluate is:
[tex]\[ \int_{-3}^{-2} (y^2 - (-5y - 6)) \, dy \][/tex]
- Simplify the integrand:
[tex]\[ \int_{-3}^{-2} (y^2 + 5y + 6) \, dy \][/tex]
3. Evaluate the Integral
- Find the antiderivative of the integrand:
[tex]\[ \int (y^2 + 5y + 6) \, dy = \frac{y^3}{3} + \frac{5y^2}{2} + 6y + C \][/tex]
- Evaluate the antiderivative at the bounds:
[tex]\[ \left[ \frac{-2^3}{3} + \frac{5(-2)^2}{2} + 6(-2) \right] - \left[ \frac{-3^3}{3} + \frac{5(-3)^2}{2} + 6(-3) \right] \][/tex]
4. Substitute and Calculate
- First, calculate at [tex]\( y = -2 \)[/tex]:
[tex]\[ \left[ \frac{(-2)^3}{3} + \frac{5(-2)^2}{2} + 6(-2) \right] = \left[ \frac{-8}{3} + \frac{20}{2} - 12 \right] = \left[ \frac{-8}{3} + 10 - 12 \right] = \left[ \frac{-8}{3} - 2 \right] = \frac{-8}{3} - \frac{6}{3} = \frac{-14}{3} \][/tex]
- Then, calculate at [tex]\( y = -3 \)[/tex]:
[tex]\[ \left[ \frac{(-3)^3}{3} + \frac{5(-3)^2}{2} + 6(-3) \right] = \left[ \frac{-27}{3} + \frac{45}{2} - 18 \right] = \left[ -9 + 22.5 - 18 \right] = \left[ -9 + 4.5 \right] = -4.5 \][/tex]
- Now, subtract these values:
[tex]\[ \frac{-14}{3} - (-4.5) = \frac{-14}{3} + \frac{9}{2} = \frac{-28 + 27}{6} = \frac{-1}{6} \][/tex]
Therefore, the area bounded by the curves [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex] is [tex]\( -\frac{1}{6} \)[/tex] or approximately -0.1667 (considering the integration accuracy).
1. Identify the Points of Intersection
- First, we need to find the points where the two curves intersect. This means setting the two equations equal to each other and solving for [tex]\( y \)[/tex]:
[tex]\[ y^2 = -5y - 6 \][/tex]
- Rearrange this equation to form a standard quadratic equation:
[tex]\[ y^2 + 5y + 6 = 0 \][/tex]
- Solving this quadratic equation, we find the roots are:
[tex]\[ y = -3 \quad \text{and} \quad y = -2 \][/tex]
- Therefore, the curves intersect at [tex]\( y = -3 \)[/tex] and [tex]\( y = -2 \)[/tex].
2. Set Up the Integral
- The area between the curves can be determined by integrating the difference of the functions [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex] with respect to [tex]\( y \)[/tex] over the interval from [tex]\( y = -3 \)[/tex] to [tex]\( y = -2 \)[/tex].
- The integral we need to evaluate is:
[tex]\[ \int_{-3}^{-2} (y^2 - (-5y - 6)) \, dy \][/tex]
- Simplify the integrand:
[tex]\[ \int_{-3}^{-2} (y^2 + 5y + 6) \, dy \][/tex]
3. Evaluate the Integral
- Find the antiderivative of the integrand:
[tex]\[ \int (y^2 + 5y + 6) \, dy = \frac{y^3}{3} + \frac{5y^2}{2} + 6y + C \][/tex]
- Evaluate the antiderivative at the bounds:
[tex]\[ \left[ \frac{-2^3}{3} + \frac{5(-2)^2}{2} + 6(-2) \right] - \left[ \frac{-3^3}{3} + \frac{5(-3)^2}{2} + 6(-3) \right] \][/tex]
4. Substitute and Calculate
- First, calculate at [tex]\( y = -2 \)[/tex]:
[tex]\[ \left[ \frac{(-2)^3}{3} + \frac{5(-2)^2}{2} + 6(-2) \right] = \left[ \frac{-8}{3} + \frac{20}{2} - 12 \right] = \left[ \frac{-8}{3} + 10 - 12 \right] = \left[ \frac{-8}{3} - 2 \right] = \frac{-8}{3} - \frac{6}{3} = \frac{-14}{3} \][/tex]
- Then, calculate at [tex]\( y = -3 \)[/tex]:
[tex]\[ \left[ \frac{(-3)^3}{3} + \frac{5(-3)^2}{2} + 6(-3) \right] = \left[ \frac{-27}{3} + \frac{45}{2} - 18 \right] = \left[ -9 + 22.5 - 18 \right] = \left[ -9 + 4.5 \right] = -4.5 \][/tex]
- Now, subtract these values:
[tex]\[ \frac{-14}{3} - (-4.5) = \frac{-14}{3} + \frac{9}{2} = \frac{-28 + 27}{6} = \frac{-1}{6} \][/tex]
Therefore, the area bounded by the curves [tex]\( x = y^2 \)[/tex] and [tex]\( x = -5y - 6 \)[/tex] is [tex]\( -\frac{1}{6} \)[/tex] or approximately -0.1667 (considering the integration accuracy).
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.