Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Which expression is equivalent to [tex]\frac{\sqrt{2}}{\sqrt[3]{2}}[/tex]?

A. [tex]\frac{1}{4}[/tex]
B. [tex]\sqrt[6]{2}[/tex]
C. [tex]\sqrt{2}[/tex]
D. [tex]\frac{\sqrt{2}}{2}[/tex]


Sagot :

Let's find an expression equivalent to [tex]\(\frac{\sqrt{2}}{\sqrt[3]{2}}\)[/tex].

First, recall the properties of exponents and roots:
[tex]\[ \sqrt{2} = 2^{1/2} \][/tex]
[tex]\[ \sqrt[3]{2} = 2^{1/3} \][/tex]

We need to simplify the expression [tex]\(\frac{\sqrt{2}}{\sqrt[3]{2}}\)[/tex], which translates to:
[tex]\[ \frac{2^{1/2}}{2^{1/3}} \][/tex]

Using the property of exponents that states [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex], we can rewrite the expression as:
[tex]\[ 2^{1/2} \div 2^{1/3} = 2^{1/2 - 1/3} \][/tex]

Next, we need to subtract the exponents:
[tex]\[ 1/2 - 1/3 \][/tex]

To subtract these fractions, find a common denominator. The common denominator for 2 and 3 is 6:
[tex]\[ 1/2 = 3/6 \][/tex]
[tex]\[ 1/3 = 2/6 \][/tex]

Now, subtract:
[tex]\[ 1/2 - 1/3 = 3/6 - 2/6 = 1/6 \][/tex]

So, the expression simplifies to:
[tex]\[ 2^{1/6} \][/tex]

This is equivalent to the sixth root of 2, which can be written as:
[tex]\[ \sqrt[6]{2} \][/tex]

Thus, the correct answer is:
[tex]\[ \sqrt[6]{2} \][/tex]