Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, we need to follow these steps:
1. Determine the Least Common Multiple (LCM) of 40, 48, and 60:
- First, we find the LCM of 40 and 48.
- Then, we use the result to find the LCM of that number with 60.
2. Find the Greatest 3-digit Number Divisible by the LCM:
- A 3-digit number ranges from 100 to 999.
- We need to determine the highest number within this range that is divisible by the LCM.
Let's go through the steps in detail:
### Step 1: Finding the LCM
- LCM of 40 and 48:
To find this, we can use the formula for the LCM of two numbers:
[tex]\[ \text{LCM}(a, b) = \frac{|a \times b|}{\text{GCD}(a, b)} \][/tex]
- The Greatest Common Divisor (GCD) of 40 and 48 is 8.
- Therefore,
[tex]\[ \text{LCM}(40, 48) = \frac{40 \times 48}{8} = 240 \][/tex]
- LCM of 240 (result from above) and 60:
- The GCD of 240 and 60 is 60.
- So,
[tex]\[ \text{LCM}(240, 60) = \frac{240 \times 60}{60} = 240 \][/tex]
Hence, the LCM of 40, 48, and 60 is 240.
### Step 2: Find the Greatest 3-digit Number Divisible by 240
- We need to find the highest 3-digit number divisible by 240. The largest 3-digit number is 999.
- We divide 999 by 240 and take the integer part of the quotient, then multiply it back by 240 to get the largest number within 3 digits that is divisible by 240.
[tex]\[ \left\lfloor \frac{999}{240} \right\rfloor = 4 \quad \text{(quotient)} \][/tex]
[tex]\[ 4 \times 240 = 960 \][/tex]
So, the greatest 3-digit number which is exactly divisible by 40, 48, and 60 is 960.
1. Determine the Least Common Multiple (LCM) of 40, 48, and 60:
- First, we find the LCM of 40 and 48.
- Then, we use the result to find the LCM of that number with 60.
2. Find the Greatest 3-digit Number Divisible by the LCM:
- A 3-digit number ranges from 100 to 999.
- We need to determine the highest number within this range that is divisible by the LCM.
Let's go through the steps in detail:
### Step 1: Finding the LCM
- LCM of 40 and 48:
To find this, we can use the formula for the LCM of two numbers:
[tex]\[ \text{LCM}(a, b) = \frac{|a \times b|}{\text{GCD}(a, b)} \][/tex]
- The Greatest Common Divisor (GCD) of 40 and 48 is 8.
- Therefore,
[tex]\[ \text{LCM}(40, 48) = \frac{40 \times 48}{8} = 240 \][/tex]
- LCM of 240 (result from above) and 60:
- The GCD of 240 and 60 is 60.
- So,
[tex]\[ \text{LCM}(240, 60) = \frac{240 \times 60}{60} = 240 \][/tex]
Hence, the LCM of 40, 48, and 60 is 240.
### Step 2: Find the Greatest 3-digit Number Divisible by 240
- We need to find the highest 3-digit number divisible by 240. The largest 3-digit number is 999.
- We divide 999 by 240 and take the integer part of the quotient, then multiply it back by 240 to get the largest number within 3 digits that is divisible by 240.
[tex]\[ \left\lfloor \frac{999}{240} \right\rfloor = 4 \quad \text{(quotient)} \][/tex]
[tex]\[ 4 \times 240 = 960 \][/tex]
So, the greatest 3-digit number which is exactly divisible by 40, 48, and 60 is 960.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.