Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Assignment: Definition of a logarithm

Solve the equation [tex]\log _4(x+20)=3[/tex]

[tex]x = \square[/tex]


Sagot :

To solve the equation [tex]\(\log_4(x + 20) = 3\)[/tex], we'll use the definition and properties of logarithms. Here is the step-by-step process:

1. Understand the logarithmic equation:
[tex]\[ \log_4(x + 20) = 3 \][/tex]
This equation states that the logarithm of [tex]\(x + 20\)[/tex] with base 4 is equal to 3.

2. Rewrite the logarithm in exponential form:
According to the definition of a logarithm, if [tex]\(\log_b(a) = c\)[/tex] then [tex]\(b^c = a\)[/tex]. Therefore:
[tex]\[ 4^3 = x + 20 \][/tex]

3. Calculate the value of [tex]\(4^3\)[/tex]:
[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]

4. Set up the equation with the computed value:
[tex]\[ 64 = x + 20 \][/tex]

5. Solve for [tex]\(x\)[/tex]:
Subtract 20 from both sides of the equation:
[tex]\[ x = 64 - 20 \][/tex]

6. Perform the subtraction:
[tex]\[ x = 44 \][/tex]

Therefore, the solution to the equation [tex]\(\log_4(x + 20) = 3\)[/tex] is:
[tex]\[ x = 44 \][/tex]

[tex]\(\boxed{44}\)[/tex]