Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's address the problem step by step.
Firstly, we observe the given sequence:
[tex]\[ -1, -\frac{1}{3}, -\frac{1}{9}, -\frac{1}{27}, \ldots \][/tex]
This is a geometric sequence because each term after the first is obtained by multiplying the preceding term by a constant ratio.
### Step 1: Determine the Common Ratio
To find the common ratio ([tex]\(r\)[/tex]), we divide the second term by the first term:
[tex]\[ r = \frac{-\frac{1}{3}}{-1} = \frac{1}{3} \][/tex]
So, the common ratio is [tex]\(\frac{1}{3}\)[/tex].
### Step 2: Write the Explicit Formula
The general formula for the [tex]\(n\)[/tex]th term ([tex]\(a_n\)[/tex]) of a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
where [tex]\(a_1\)[/tex] is the first term of the sequence and [tex]\(r\)[/tex] is the common ratio.
For the given sequence, [tex]\(a_1 = -1\)[/tex] and [tex]\(r = \frac{1}{3}\)[/tex]. Substituting these values, we get:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
#### Explicit Formula:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
### Step 3: Find the 10th Term
To find the 10th term of the sequence ([tex]\(a_{10}\)[/tex]), we substitute [tex]\(n = 10\)[/tex] into the explicit formula:
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^{(10-1)} \][/tex]
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^9 \][/tex]
Evaluating [tex]\(\left(\frac{1}{3}\right)^9\)[/tex], we get:
[tex]\[ \left(\frac{1}{3}\right)^9 \approx 5.080526342529086 \times 10^{-5} \][/tex]
So, multiplying by [tex]\(-1\)[/tex]:
[tex]\[ a_{10} \approx -1 \cdot 5.080526342529086 \times 10^{-5} \][/tex]
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]
Thus, the explicit formula for the sequence is:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
And the 10th term of the sequence is:
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]
Firstly, we observe the given sequence:
[tex]\[ -1, -\frac{1}{3}, -\frac{1}{9}, -\frac{1}{27}, \ldots \][/tex]
This is a geometric sequence because each term after the first is obtained by multiplying the preceding term by a constant ratio.
### Step 1: Determine the Common Ratio
To find the common ratio ([tex]\(r\)[/tex]), we divide the second term by the first term:
[tex]\[ r = \frac{-\frac{1}{3}}{-1} = \frac{1}{3} \][/tex]
So, the common ratio is [tex]\(\frac{1}{3}\)[/tex].
### Step 2: Write the Explicit Formula
The general formula for the [tex]\(n\)[/tex]th term ([tex]\(a_n\)[/tex]) of a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
where [tex]\(a_1\)[/tex] is the first term of the sequence and [tex]\(r\)[/tex] is the common ratio.
For the given sequence, [tex]\(a_1 = -1\)[/tex] and [tex]\(r = \frac{1}{3}\)[/tex]. Substituting these values, we get:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
#### Explicit Formula:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
### Step 3: Find the 10th Term
To find the 10th term of the sequence ([tex]\(a_{10}\)[/tex]), we substitute [tex]\(n = 10\)[/tex] into the explicit formula:
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^{(10-1)} \][/tex]
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^9 \][/tex]
Evaluating [tex]\(\left(\frac{1}{3}\right)^9\)[/tex], we get:
[tex]\[ \left(\frac{1}{3}\right)^9 \approx 5.080526342529086 \times 10^{-5} \][/tex]
So, multiplying by [tex]\(-1\)[/tex]:
[tex]\[ a_{10} \approx -1 \cdot 5.080526342529086 \times 10^{-5} \][/tex]
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]
Thus, the explicit formula for the sequence is:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
And the 10th term of the sequence is:
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.