Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What is the explicit formula for this sequence?
[tex]\[ -1, -\frac{1}{3}, -\frac{1}{9}, -\frac{1}{27}, \ldots \][/tex]

What is the 10th term of this sequence?


Sagot :

Let's address the problem step by step.

Firstly, we observe the given sequence:
[tex]\[ -1, -\frac{1}{3}, -\frac{1}{9}, -\frac{1}{27}, \ldots \][/tex]

This is a geometric sequence because each term after the first is obtained by multiplying the preceding term by a constant ratio.

### Step 1: Determine the Common Ratio

To find the common ratio ([tex]\(r\)[/tex]), we divide the second term by the first term:
[tex]\[ r = \frac{-\frac{1}{3}}{-1} = \frac{1}{3} \][/tex]
So, the common ratio is [tex]\(\frac{1}{3}\)[/tex].

### Step 2: Write the Explicit Formula

The general formula for the [tex]\(n\)[/tex]th term ([tex]\(a_n\)[/tex]) of a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
where [tex]\(a_1\)[/tex] is the first term of the sequence and [tex]\(r\)[/tex] is the common ratio.

For the given sequence, [tex]\(a_1 = -1\)[/tex] and [tex]\(r = \frac{1}{3}\)[/tex]. Substituting these values, we get:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]

#### Explicit Formula:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]

### Step 3: Find the 10th Term

To find the 10th term of the sequence ([tex]\(a_{10}\)[/tex]), we substitute [tex]\(n = 10\)[/tex] into the explicit formula:

[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^{(10-1)} \][/tex]
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^9 \][/tex]

Evaluating [tex]\(\left(\frac{1}{3}\right)^9\)[/tex], we get:
[tex]\[ \left(\frac{1}{3}\right)^9 \approx 5.080526342529086 \times 10^{-5} \][/tex]

So, multiplying by [tex]\(-1\)[/tex]:
[tex]\[ a_{10} \approx -1 \cdot 5.080526342529086 \times 10^{-5} \][/tex]
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]

Thus, the explicit formula for the sequence is:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]

And the 10th term of the sequence is:
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]