At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's address the problem step by step.
Firstly, we observe the given sequence:
[tex]\[ -1, -\frac{1}{3}, -\frac{1}{9}, -\frac{1}{27}, \ldots \][/tex]
This is a geometric sequence because each term after the first is obtained by multiplying the preceding term by a constant ratio.
### Step 1: Determine the Common Ratio
To find the common ratio ([tex]\(r\)[/tex]), we divide the second term by the first term:
[tex]\[ r = \frac{-\frac{1}{3}}{-1} = \frac{1}{3} \][/tex]
So, the common ratio is [tex]\(\frac{1}{3}\)[/tex].
### Step 2: Write the Explicit Formula
The general formula for the [tex]\(n\)[/tex]th term ([tex]\(a_n\)[/tex]) of a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
where [tex]\(a_1\)[/tex] is the first term of the sequence and [tex]\(r\)[/tex] is the common ratio.
For the given sequence, [tex]\(a_1 = -1\)[/tex] and [tex]\(r = \frac{1}{3}\)[/tex]. Substituting these values, we get:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
#### Explicit Formula:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
### Step 3: Find the 10th Term
To find the 10th term of the sequence ([tex]\(a_{10}\)[/tex]), we substitute [tex]\(n = 10\)[/tex] into the explicit formula:
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^{(10-1)} \][/tex]
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^9 \][/tex]
Evaluating [tex]\(\left(\frac{1}{3}\right)^9\)[/tex], we get:
[tex]\[ \left(\frac{1}{3}\right)^9 \approx 5.080526342529086 \times 10^{-5} \][/tex]
So, multiplying by [tex]\(-1\)[/tex]:
[tex]\[ a_{10} \approx -1 \cdot 5.080526342529086 \times 10^{-5} \][/tex]
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]
Thus, the explicit formula for the sequence is:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
And the 10th term of the sequence is:
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]
Firstly, we observe the given sequence:
[tex]\[ -1, -\frac{1}{3}, -\frac{1}{9}, -\frac{1}{27}, \ldots \][/tex]
This is a geometric sequence because each term after the first is obtained by multiplying the preceding term by a constant ratio.
### Step 1: Determine the Common Ratio
To find the common ratio ([tex]\(r\)[/tex]), we divide the second term by the first term:
[tex]\[ r = \frac{-\frac{1}{3}}{-1} = \frac{1}{3} \][/tex]
So, the common ratio is [tex]\(\frac{1}{3}\)[/tex].
### Step 2: Write the Explicit Formula
The general formula for the [tex]\(n\)[/tex]th term ([tex]\(a_n\)[/tex]) of a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
where [tex]\(a_1\)[/tex] is the first term of the sequence and [tex]\(r\)[/tex] is the common ratio.
For the given sequence, [tex]\(a_1 = -1\)[/tex] and [tex]\(r = \frac{1}{3}\)[/tex]. Substituting these values, we get:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
#### Explicit Formula:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
### Step 3: Find the 10th Term
To find the 10th term of the sequence ([tex]\(a_{10}\)[/tex]), we substitute [tex]\(n = 10\)[/tex] into the explicit formula:
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^{(10-1)} \][/tex]
[tex]\[ a_{10} = -1 \cdot \left(\frac{1}{3}\right)^9 \][/tex]
Evaluating [tex]\(\left(\frac{1}{3}\right)^9\)[/tex], we get:
[tex]\[ \left(\frac{1}{3}\right)^9 \approx 5.080526342529086 \times 10^{-5} \][/tex]
So, multiplying by [tex]\(-1\)[/tex]:
[tex]\[ a_{10} \approx -1 \cdot 5.080526342529086 \times 10^{-5} \][/tex]
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]
Thus, the explicit formula for the sequence is:
[tex]\[ a_n = -1 \cdot \left(\frac{1}{3}\right)^{(n-1)} \][/tex]
And the 10th term of the sequence is:
[tex]\[ a_{10} \approx -5.080526342529086 \times 10^{-5} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.