Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's work with the function [tex]\( f(x) = 5 \cdot 3^x \)[/tex]. Let me provide you with a detailed, step-by-step explanation of how this function behaves.
### Step 1: Understanding the Function
The function [tex]\( f(x) = 5 \cdot 3^x \)[/tex] is an exponential function. In general terms, it multiplies the constant 5 by 3 raised to the power of [tex]\( x \)[/tex].
### Step 2: Values of the Function
To understand better how this function operates, let's calculate some values for specific inputs of [tex]\( x \)[/tex].
1. When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 5 \cdot 3^0 = 5 \cdot 1 = 5 \][/tex]
2. When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 5 \cdot 3^1 = 5 \cdot 3 = 15 \][/tex]
3. When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 \cdot 3^2 = 5 \cdot 9 = 45 \][/tex]
4. When [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 5 \cdot 3^{-1} = 5 \cdot \frac{1}{3} \approx 1.67 \][/tex]
### Step 3: Observations
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] grows exponentially.
- As [tex]\( x \)[/tex] decreases (negative values), [tex]\( f(x) \)[/tex] approaches zero but does not reach zero (assuming [tex]\( x \rightarrow -\infty \)[/tex]).
- The base of the exponent is 3, and its effect is scaled by the multiplier 5.
### Step 4: Graphical Representation
The graph of [tex]\( f(x) = 5 \cdot 3^x \)[/tex] will have the following characteristics:
- It always passes through the point [tex]\( (0, 5) \)[/tex].
- It increases rapidly for positive values of [tex]\( x \)[/tex].
- It approaches the x-axis but never touches it as [tex]\( x \rightarrow -\infty \)[/tex].
### Step 5: Asymptotic Behavior
- As [tex]\( x \rightarrow \infty \)[/tex]:
The function [tex]\( f(x) \)[/tex] increases towards infinity.
[tex]\[ \lim_{x \to \infty} 5 \cdot 3^x = \infty \][/tex]
- As [tex]\( x \rightarrow -\infty \)[/tex]:
The function [tex]\( f(x) \)[/tex] asymptotically approaches zero.
[tex]\[ \lim_{x \to -\infty} 5 \cdot 3^x = 0 \][/tex]
### Conclusion
The function [tex]\( f(x) = 5 \cdot 3^x \)[/tex] is an exponential function characterized by growing rapidly for positive [tex]\( x \)[/tex] and decaying towards zero for negative [tex]\( x \)[/tex]. The constant 5 serves as the scaling factor, and the base 3 dictates the rate of exponential growth.
### Step 1: Understanding the Function
The function [tex]\( f(x) = 5 \cdot 3^x \)[/tex] is an exponential function. In general terms, it multiplies the constant 5 by 3 raised to the power of [tex]\( x \)[/tex].
### Step 2: Values of the Function
To understand better how this function operates, let's calculate some values for specific inputs of [tex]\( x \)[/tex].
1. When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 5 \cdot 3^0 = 5 \cdot 1 = 5 \][/tex]
2. When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 5 \cdot 3^1 = 5 \cdot 3 = 15 \][/tex]
3. When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 \cdot 3^2 = 5 \cdot 9 = 45 \][/tex]
4. When [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 5 \cdot 3^{-1} = 5 \cdot \frac{1}{3} \approx 1.67 \][/tex]
### Step 3: Observations
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] grows exponentially.
- As [tex]\( x \)[/tex] decreases (negative values), [tex]\( f(x) \)[/tex] approaches zero but does not reach zero (assuming [tex]\( x \rightarrow -\infty \)[/tex]).
- The base of the exponent is 3, and its effect is scaled by the multiplier 5.
### Step 4: Graphical Representation
The graph of [tex]\( f(x) = 5 \cdot 3^x \)[/tex] will have the following characteristics:
- It always passes through the point [tex]\( (0, 5) \)[/tex].
- It increases rapidly for positive values of [tex]\( x \)[/tex].
- It approaches the x-axis but never touches it as [tex]\( x \rightarrow -\infty \)[/tex].
### Step 5: Asymptotic Behavior
- As [tex]\( x \rightarrow \infty \)[/tex]:
The function [tex]\( f(x) \)[/tex] increases towards infinity.
[tex]\[ \lim_{x \to \infty} 5 \cdot 3^x = \infty \][/tex]
- As [tex]\( x \rightarrow -\infty \)[/tex]:
The function [tex]\( f(x) \)[/tex] asymptotically approaches zero.
[tex]\[ \lim_{x \to -\infty} 5 \cdot 3^x = 0 \][/tex]
### Conclusion
The function [tex]\( f(x) = 5 \cdot 3^x \)[/tex] is an exponential function characterized by growing rapidly for positive [tex]\( x \)[/tex] and decaying towards zero for negative [tex]\( x \)[/tex]. The constant 5 serves as the scaling factor, and the base 3 dictates the rate of exponential growth.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.