Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's work with the function [tex]\( f(x) = 5 \cdot 3^x \)[/tex]. Let me provide you with a detailed, step-by-step explanation of how this function behaves.
### Step 1: Understanding the Function
The function [tex]\( f(x) = 5 \cdot 3^x \)[/tex] is an exponential function. In general terms, it multiplies the constant 5 by 3 raised to the power of [tex]\( x \)[/tex].
### Step 2: Values of the Function
To understand better how this function operates, let's calculate some values for specific inputs of [tex]\( x \)[/tex].
1. When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 5 \cdot 3^0 = 5 \cdot 1 = 5 \][/tex]
2. When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 5 \cdot 3^1 = 5 \cdot 3 = 15 \][/tex]
3. When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 \cdot 3^2 = 5 \cdot 9 = 45 \][/tex]
4. When [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 5 \cdot 3^{-1} = 5 \cdot \frac{1}{3} \approx 1.67 \][/tex]
### Step 3: Observations
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] grows exponentially.
- As [tex]\( x \)[/tex] decreases (negative values), [tex]\( f(x) \)[/tex] approaches zero but does not reach zero (assuming [tex]\( x \rightarrow -\infty \)[/tex]).
- The base of the exponent is 3, and its effect is scaled by the multiplier 5.
### Step 4: Graphical Representation
The graph of [tex]\( f(x) = 5 \cdot 3^x \)[/tex] will have the following characteristics:
- It always passes through the point [tex]\( (0, 5) \)[/tex].
- It increases rapidly for positive values of [tex]\( x \)[/tex].
- It approaches the x-axis but never touches it as [tex]\( x \rightarrow -\infty \)[/tex].
### Step 5: Asymptotic Behavior
- As [tex]\( x \rightarrow \infty \)[/tex]:
The function [tex]\( f(x) \)[/tex] increases towards infinity.
[tex]\[ \lim_{x \to \infty} 5 \cdot 3^x = \infty \][/tex]
- As [tex]\( x \rightarrow -\infty \)[/tex]:
The function [tex]\( f(x) \)[/tex] asymptotically approaches zero.
[tex]\[ \lim_{x \to -\infty} 5 \cdot 3^x = 0 \][/tex]
### Conclusion
The function [tex]\( f(x) = 5 \cdot 3^x \)[/tex] is an exponential function characterized by growing rapidly for positive [tex]\( x \)[/tex] and decaying towards zero for negative [tex]\( x \)[/tex]. The constant 5 serves as the scaling factor, and the base 3 dictates the rate of exponential growth.
### Step 1: Understanding the Function
The function [tex]\( f(x) = 5 \cdot 3^x \)[/tex] is an exponential function. In general terms, it multiplies the constant 5 by 3 raised to the power of [tex]\( x \)[/tex].
### Step 2: Values of the Function
To understand better how this function operates, let's calculate some values for specific inputs of [tex]\( x \)[/tex].
1. When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 5 \cdot 3^0 = 5 \cdot 1 = 5 \][/tex]
2. When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 5 \cdot 3^1 = 5 \cdot 3 = 15 \][/tex]
3. When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 \cdot 3^2 = 5 \cdot 9 = 45 \][/tex]
4. When [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 5 \cdot 3^{-1} = 5 \cdot \frac{1}{3} \approx 1.67 \][/tex]
### Step 3: Observations
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] grows exponentially.
- As [tex]\( x \)[/tex] decreases (negative values), [tex]\( f(x) \)[/tex] approaches zero but does not reach zero (assuming [tex]\( x \rightarrow -\infty \)[/tex]).
- The base of the exponent is 3, and its effect is scaled by the multiplier 5.
### Step 4: Graphical Representation
The graph of [tex]\( f(x) = 5 \cdot 3^x \)[/tex] will have the following characteristics:
- It always passes through the point [tex]\( (0, 5) \)[/tex].
- It increases rapidly for positive values of [tex]\( x \)[/tex].
- It approaches the x-axis but never touches it as [tex]\( x \rightarrow -\infty \)[/tex].
### Step 5: Asymptotic Behavior
- As [tex]\( x \rightarrow \infty \)[/tex]:
The function [tex]\( f(x) \)[/tex] increases towards infinity.
[tex]\[ \lim_{x \to \infty} 5 \cdot 3^x = \infty \][/tex]
- As [tex]\( x \rightarrow -\infty \)[/tex]:
The function [tex]\( f(x) \)[/tex] asymptotically approaches zero.
[tex]\[ \lim_{x \to -\infty} 5 \cdot 3^x = 0 \][/tex]
### Conclusion
The function [tex]\( f(x) = 5 \cdot 3^x \)[/tex] is an exponential function characterized by growing rapidly for positive [tex]\( x \)[/tex] and decaying towards zero for negative [tex]\( x \)[/tex]. The constant 5 serves as the scaling factor, and the base 3 dictates the rate of exponential growth.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.