Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Here is a detailed, step-by-step solution for solving the equation [tex]\(\log(x^2 - 15) = \log(2x)\)[/tex]:
### Step 1
Use the property of logarithms which states that if [tex]\(\log A = \log B\)[/tex], then [tex]\(A = B\)[/tex]. Applying this property to our equation:
[tex]\[ x^2 - 15 = 2x \][/tex]
### Step 2
Rearrange the equation to form a standard quadratic equation by subtracting [tex]\(2x\)[/tex] from both sides:
[tex]\[ x^2 - 2x - 15 = 0 \][/tex]
### Step 3
Factor the quadratic equation. Factoring is the process of expressing the equation as a product of binomials:
[tex]\[ (x - 5)(x + 3) = 0 \][/tex]
### Step 4
Set each factor equal to zero and solve for [tex]\(x\)[/tex]. This step will give us the potential solutions:
[tex]\[ x - 5 = 0 \quad \text{or} \quad x + 3 = 0 \][/tex]
### Step 5
Solve the simple equations from the previous step to find the potential solutions for [tex]\(x\)[/tex]:
[tex]\[ x = 5 \quad \text{or} \quad x = -3 \][/tex]
Now, let's order the given steps from the problem according to the logical sequence we have established above:
1. [tex]\(x^2 - 15 = 2x\)[/tex]
2. [tex]\(x^2 - 2x - 15 = 0\)[/tex]
3. [tex]\((x - 5)(x + 3) = 0\)[/tex]
4. [tex]\(x - 5 = 0\)[/tex] or [tex]\(x + 3 = 0\)[/tex]
5. Potential solutions are [tex]\(x = 5\)[/tex] and [tex]\(x = -3\)[/tex]
These steps will guide you through solving the equation [tex]\(\log(x^2 - 15) = \log(2x)\)[/tex].
### Step 1
Use the property of logarithms which states that if [tex]\(\log A = \log B\)[/tex], then [tex]\(A = B\)[/tex]. Applying this property to our equation:
[tex]\[ x^2 - 15 = 2x \][/tex]
### Step 2
Rearrange the equation to form a standard quadratic equation by subtracting [tex]\(2x\)[/tex] from both sides:
[tex]\[ x^2 - 2x - 15 = 0 \][/tex]
### Step 3
Factor the quadratic equation. Factoring is the process of expressing the equation as a product of binomials:
[tex]\[ (x - 5)(x + 3) = 0 \][/tex]
### Step 4
Set each factor equal to zero and solve for [tex]\(x\)[/tex]. This step will give us the potential solutions:
[tex]\[ x - 5 = 0 \quad \text{or} \quad x + 3 = 0 \][/tex]
### Step 5
Solve the simple equations from the previous step to find the potential solutions for [tex]\(x\)[/tex]:
[tex]\[ x = 5 \quad \text{or} \quad x = -3 \][/tex]
Now, let's order the given steps from the problem according to the logical sequence we have established above:
1. [tex]\(x^2 - 15 = 2x\)[/tex]
2. [tex]\(x^2 - 2x - 15 = 0\)[/tex]
3. [tex]\((x - 5)(x + 3) = 0\)[/tex]
4. [tex]\(x - 5 = 0\)[/tex] or [tex]\(x + 3 = 0\)[/tex]
5. Potential solutions are [tex]\(x = 5\)[/tex] and [tex]\(x = -3\)[/tex]
These steps will guide you through solving the equation [tex]\(\log(x^2 - 15) = \log(2x)\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.