Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine if Miguel's claim is correct, we need to check whether the events "the book is a paperback (PB)" and "the book is a nonfiction (NF)" are independent.
Two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if and only if:
[tex]\[ P(A \mid B) = P(A) \][/tex]
In our context, this means that the probability of a book being nonfiction given that it is paperback ([tex]\(P(NF \mid PB)\)[/tex]) should be equal to the overall probability of a book being nonfiction ([tex]\(P(NF)\)[/tex]).
Let's calculate the probabilities step by step:
1. Calculate [tex]\( P(NF \mid PB) \)[/tex]:
- This is the probability that a book is nonfiction given that it is paperback.
- We use the numbers from the table:
- Nonfiction paperback books (PB & NF): 60
- Total paperback books (PB): 80
[tex]\[ P(NF \mid PB) = \frac{\text{Number of nonfiction paperback books}}{\text{Total number of paperback books}} = \frac{60}{80} = 0.75 \][/tex]
2. Calculate [tex]\( P(NF) \)[/tex]:
- This is the overall probability that a book is nonfiction.
- We use the numbers from the table:
- Total nonfiction books (NF): 90
- Total number of books: 120
[tex]\[ P(NF) = \frac{\text{Total number of nonfiction books}}{\text{Total number of books}} = \frac{90}{120} = 0.75 \][/tex]
3. Compare [tex]\( P(NF \mid PB) \)[/tex] and [tex]\( P(NF) \)[/tex]:
- We found that:
[tex]\[ P(NF \mid PB) = 0.75 \][/tex]
[tex]\[ P(NF) = 0.75 \][/tex]
Since [tex]\( P(NF \mid PB) = P(NF) \)[/tex], we conclude that the events "the book is a paperback (PB)" and "the book is a nonfiction (NF)" are indeed independent.
Therefore, Miguel's claim is correct. The correct statement is:
- Yes, the two events are independent because [tex]\(P(NF \mid PB) = P(NF)\)[/tex].
Two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if and only if:
[tex]\[ P(A \mid B) = P(A) \][/tex]
In our context, this means that the probability of a book being nonfiction given that it is paperback ([tex]\(P(NF \mid PB)\)[/tex]) should be equal to the overall probability of a book being nonfiction ([tex]\(P(NF)\)[/tex]).
Let's calculate the probabilities step by step:
1. Calculate [tex]\( P(NF \mid PB) \)[/tex]:
- This is the probability that a book is nonfiction given that it is paperback.
- We use the numbers from the table:
- Nonfiction paperback books (PB & NF): 60
- Total paperback books (PB): 80
[tex]\[ P(NF \mid PB) = \frac{\text{Number of nonfiction paperback books}}{\text{Total number of paperback books}} = \frac{60}{80} = 0.75 \][/tex]
2. Calculate [tex]\( P(NF) \)[/tex]:
- This is the overall probability that a book is nonfiction.
- We use the numbers from the table:
- Total nonfiction books (NF): 90
- Total number of books: 120
[tex]\[ P(NF) = \frac{\text{Total number of nonfiction books}}{\text{Total number of books}} = \frac{90}{120} = 0.75 \][/tex]
3. Compare [tex]\( P(NF \mid PB) \)[/tex] and [tex]\( P(NF) \)[/tex]:
- We found that:
[tex]\[ P(NF \mid PB) = 0.75 \][/tex]
[tex]\[ P(NF) = 0.75 \][/tex]
Since [tex]\( P(NF \mid PB) = P(NF) \)[/tex], we conclude that the events "the book is a paperback (PB)" and "the book is a nonfiction (NF)" are indeed independent.
Therefore, Miguel's claim is correct. The correct statement is:
- Yes, the two events are independent because [tex]\(P(NF \mid PB) = P(NF)\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.