Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's find the completely factored form of the expression [tex]\( 9x^3y - 100xy \)[/tex].
### Step-by-Step Solution
1. Identify Common Factors: Look for common factors in the terms [tex]\( 9x^3y \)[/tex] and [tex]\( 100xy \)[/tex].
Both terms have [tex]\( xy \)[/tex] as a common factor.
2. Factor Out the Common Factor:
Factor [tex]\( xy \)[/tex] out from both terms:
[tex]\[ 9x^3y - 100xy = xy(9x^2 - 100) \][/tex]
3. Factor the Quadratic Expression: Now factor the quadratic expression [tex]\( 9x^2 - 100 \)[/tex].
Notice that [tex]\( 9x^2 - 100 \)[/tex] is a difference of squares. Recall that a difference of squares [tex]\( a^2 - b^2 \)[/tex] can be factored as [tex]\( (a - b)(a + b) \)[/tex].
Here, [tex]\( 9x^2 \)[/tex] is a perfect square ([tex]\( (3x)^2 \)[/tex]), and [tex]\( 100 \)[/tex] is also a perfect square ([tex]\( 10^2 \)[/tex]). So we can write:
[tex]\[ 9x^2 - 100 = (3x)^2 - 10^2 \][/tex]
4. Apply the Difference of Squares Formula:
Using the formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex]:
[tex]\[ (3x)^2 - 10^2 = (3x - 10)(3x + 10) \][/tex]
5. Combine Everything: Substitute back into the factored expression:
[tex]\[ 9x^3y - 100xy = xy(3x - 10)(3x + 10) \][/tex]
Thus, the completely factored form of the given expression [tex]\( 9x^3y - 100xy \)[/tex] is:
[tex]\[ xy(3x - 10)(3x + 10) \][/tex]
### Correct Answer
[tex]\[ \boxed{xy(3x - 10)(3x + 10)} \][/tex]
So, the correct choice is:
[tex]\[ \boxed{x y (3 x - 10)(3 x + 10)} \][/tex]
### Step-by-Step Solution
1. Identify Common Factors: Look for common factors in the terms [tex]\( 9x^3y \)[/tex] and [tex]\( 100xy \)[/tex].
Both terms have [tex]\( xy \)[/tex] as a common factor.
2. Factor Out the Common Factor:
Factor [tex]\( xy \)[/tex] out from both terms:
[tex]\[ 9x^3y - 100xy = xy(9x^2 - 100) \][/tex]
3. Factor the Quadratic Expression: Now factor the quadratic expression [tex]\( 9x^2 - 100 \)[/tex].
Notice that [tex]\( 9x^2 - 100 \)[/tex] is a difference of squares. Recall that a difference of squares [tex]\( a^2 - b^2 \)[/tex] can be factored as [tex]\( (a - b)(a + b) \)[/tex].
Here, [tex]\( 9x^2 \)[/tex] is a perfect square ([tex]\( (3x)^2 \)[/tex]), and [tex]\( 100 \)[/tex] is also a perfect square ([tex]\( 10^2 \)[/tex]). So we can write:
[tex]\[ 9x^2 - 100 = (3x)^2 - 10^2 \][/tex]
4. Apply the Difference of Squares Formula:
Using the formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex]:
[tex]\[ (3x)^2 - 10^2 = (3x - 10)(3x + 10) \][/tex]
5. Combine Everything: Substitute back into the factored expression:
[tex]\[ 9x^3y - 100xy = xy(3x - 10)(3x + 10) \][/tex]
Thus, the completely factored form of the given expression [tex]\( 9x^3y - 100xy \)[/tex] is:
[tex]\[ xy(3x - 10)(3x + 10) \][/tex]
### Correct Answer
[tex]\[ \boxed{xy(3x - 10)(3x + 10)} \][/tex]
So, the correct choice is:
[tex]\[ \boxed{x y (3 x - 10)(3 x + 10)} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.