At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's determine the factors of the polynomial [tex]\( -3 x^3 + 15 x^2 + 3 x - 15 \)[/tex]. We'll do this by using polynomial factorization methods, specifically by testing the given factors to see if they divide the polynomial without leaving a remainder.
First, write the polynomial in question:
[tex]\[ P(x) = -3 x^3 + 15 x^2 + 3 x - 15 \][/tex]
Now let's test each of the given possible factors to see which ones are actual factors of the polynomial.
1. Factor: [tex]\( \pi + 1 \)[/tex]
- This is a constant and not a suitable factor for a polynomial in [tex]\( x \)[/tex]. Factors of a polynomial should also be polynomial expressions in [tex]\( x \)[/tex].
2. Factor: [tex]\( 3x - 1 \)[/tex]
- To test if [tex]\( 3x - 1 \)[/tex] is a factor, substitute [tex]\( x = \frac{1}{3} \)[/tex] into the polynomial:
[tex]\[ P\left(\frac{1}{3}\right) = -3 \left(\frac{1}{3}\right)^3 + 15 \left(\frac{1}{3}\right)^2 + 3 \left(\frac{1}{3}\right) - 15 = -3 \left(\frac{1}{27}\right) + 15 \left(\frac{1}{9}\right) + 1 - 15 = -\frac{1}{9} + \frac{5}{3} + 1 - 15 = -\frac{1}{9} + \frac{15}{9} + 1 - 15 = \frac{14}{9} + 1 - 15 = \frac{23}{9} - 15 = \frac{23}{9} - \frac{135}{9} = -\frac{112}{9} \neq 0 \][/tex]
Since [tex]\( P\left(\frac{1}{3}\right) \neq 0 \)[/tex], [tex]\( 3x - 1 \)[/tex] is not a factor.
3. Factor: [tex]\( x + 5 \)[/tex]
- To test if [tex]\( x + 5 \)[/tex] is a factor, substitute [tex]\( x = -5 \)[/tex] into the polynomial:
[tex]\[ P(-5) = -3(-5)^3 + 15(-5)^2 + 3(-5) - 15 = -3(-125) + 15(25) - 15 - 15 = 375 + 375 - 15 - 15 = 720 \neq 0 \][/tex]
Since [tex]\( P(-5) \neq 0 \)[/tex], [tex]\( x + 5 \)[/tex] is not a factor.
4. Factor: [tex]\( -3 \)[/tex]
- Since [tex]\(-3\)[/tex] is a numeric constant (a factor that cannot be zero as a polynomial zero), it cannot be considered a suitable factor in this context. Factors of a polynomial in [tex]\( x \)[/tex] should involve [tex]\( x \)[/tex].
5. Factor: [tex]\( x - 5 \)[/tex]
- To test if [tex]\( x - 5 \)[/tex] is a factor, substitute [tex]\( x = 5 \)[/tex] into the polynomial:
[tex]\[ P(5) = -3(5)^3 + 15(5)^2 + 3(5) - 15 = -3(125) + 15(25) + 15 - 15 = -375 + 375 + 15 - 15 = 0 \][/tex]
Since [tex]\( P(5) = 0 \)[/tex], [tex]\( x - 5 \)[/tex] is a factor.
6. Factor: [tex]\( x - 1 \)[/tex]
- To test if [tex]\( x - 1 \)[/tex] is a factor, substitute [tex]\( x = 1 \)[/tex] into the polynomial:
[tex]\[ P(1) = -3(1)^3 + 15(1)^2 + 3(1) - 15 = -3(1) + 15(1) + 3 - 15 = -3 + 15 + 3 - 15 = 0 \][/tex]
Since [tex]\( P(1) = 0 \)[/tex], [tex]\( x - 1 \)[/tex] is a factor.
7. Factor: [tex]\( 3x \)[/tex]
- For [tex]\( 3x \)[/tex] to be a factor, the polynomial should be zero when [tex]\( x = 0 \)[/tex]:
[tex]\[ P(0) = -3(0)^3 + 15(0)^2 + 3(0) - 15 = -15 \neq 0 \][/tex]
Since [tex]\( P(0) \neq 0 \)[/tex], [tex]\( 3x \)[/tex] is not a factor.
In conclusion, the correct factors of the polynomial [tex]\( -3 x^3 + 15 x^2 + 3 x - 15 \)[/tex] among the given options are:
- [tex]\( x - 5 \)[/tex]
- [tex]\( x - 1 \)[/tex]
First, write the polynomial in question:
[tex]\[ P(x) = -3 x^3 + 15 x^2 + 3 x - 15 \][/tex]
Now let's test each of the given possible factors to see which ones are actual factors of the polynomial.
1. Factor: [tex]\( \pi + 1 \)[/tex]
- This is a constant and not a suitable factor for a polynomial in [tex]\( x \)[/tex]. Factors of a polynomial should also be polynomial expressions in [tex]\( x \)[/tex].
2. Factor: [tex]\( 3x - 1 \)[/tex]
- To test if [tex]\( 3x - 1 \)[/tex] is a factor, substitute [tex]\( x = \frac{1}{3} \)[/tex] into the polynomial:
[tex]\[ P\left(\frac{1}{3}\right) = -3 \left(\frac{1}{3}\right)^3 + 15 \left(\frac{1}{3}\right)^2 + 3 \left(\frac{1}{3}\right) - 15 = -3 \left(\frac{1}{27}\right) + 15 \left(\frac{1}{9}\right) + 1 - 15 = -\frac{1}{9} + \frac{5}{3} + 1 - 15 = -\frac{1}{9} + \frac{15}{9} + 1 - 15 = \frac{14}{9} + 1 - 15 = \frac{23}{9} - 15 = \frac{23}{9} - \frac{135}{9} = -\frac{112}{9} \neq 0 \][/tex]
Since [tex]\( P\left(\frac{1}{3}\right) \neq 0 \)[/tex], [tex]\( 3x - 1 \)[/tex] is not a factor.
3. Factor: [tex]\( x + 5 \)[/tex]
- To test if [tex]\( x + 5 \)[/tex] is a factor, substitute [tex]\( x = -5 \)[/tex] into the polynomial:
[tex]\[ P(-5) = -3(-5)^3 + 15(-5)^2 + 3(-5) - 15 = -3(-125) + 15(25) - 15 - 15 = 375 + 375 - 15 - 15 = 720 \neq 0 \][/tex]
Since [tex]\( P(-5) \neq 0 \)[/tex], [tex]\( x + 5 \)[/tex] is not a factor.
4. Factor: [tex]\( -3 \)[/tex]
- Since [tex]\(-3\)[/tex] is a numeric constant (a factor that cannot be zero as a polynomial zero), it cannot be considered a suitable factor in this context. Factors of a polynomial in [tex]\( x \)[/tex] should involve [tex]\( x \)[/tex].
5. Factor: [tex]\( x - 5 \)[/tex]
- To test if [tex]\( x - 5 \)[/tex] is a factor, substitute [tex]\( x = 5 \)[/tex] into the polynomial:
[tex]\[ P(5) = -3(5)^3 + 15(5)^2 + 3(5) - 15 = -3(125) + 15(25) + 15 - 15 = -375 + 375 + 15 - 15 = 0 \][/tex]
Since [tex]\( P(5) = 0 \)[/tex], [tex]\( x - 5 \)[/tex] is a factor.
6. Factor: [tex]\( x - 1 \)[/tex]
- To test if [tex]\( x - 1 \)[/tex] is a factor, substitute [tex]\( x = 1 \)[/tex] into the polynomial:
[tex]\[ P(1) = -3(1)^3 + 15(1)^2 + 3(1) - 15 = -3(1) + 15(1) + 3 - 15 = -3 + 15 + 3 - 15 = 0 \][/tex]
Since [tex]\( P(1) = 0 \)[/tex], [tex]\( x - 1 \)[/tex] is a factor.
7. Factor: [tex]\( 3x \)[/tex]
- For [tex]\( 3x \)[/tex] to be a factor, the polynomial should be zero when [tex]\( x = 0 \)[/tex]:
[tex]\[ P(0) = -3(0)^3 + 15(0)^2 + 3(0) - 15 = -15 \neq 0 \][/tex]
Since [tex]\( P(0) \neq 0 \)[/tex], [tex]\( 3x \)[/tex] is not a factor.
In conclusion, the correct factors of the polynomial [tex]\( -3 x^3 + 15 x^2 + 3 x - 15 \)[/tex] among the given options are:
- [tex]\( x - 5 \)[/tex]
- [tex]\( x - 1 \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.