At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Consider the triangle.

The measures of the angles of the triangle are [tex]$32^{\circ}, 53^{\circ}, 95^{\circ}$[/tex]. Based on the side lengths, what are the measures of each angle?

A. [tex]$m \angle A = 95^{\circ}, m \angle B = 53^{\circ}, m \angle C = 32^{\circ}$[/tex]

B. [tex]$m \angle A = 32^{\circ}, m \angle B = 53^{\circ}, m \angle C = 95^{\circ}$[/tex]

C. [tex]$m \angle A = 43^{\circ}, m \angle B = 32^{\circ}, m \angle C = 95^{\circ}$[/tex]

D. [tex]$m \angle A = 53^{\circ}, m \angle B = 95^{\circ}, m \angle C = 32^{\circ}$[/tex]


Sagot :

To determine the correct measures of the angles for the given triangle based on side lengths, we start by identifying the sum of the internal angles of any triangle, which is always [tex]\(180^\circ\)[/tex]. The measures of the angles are provided as [tex]\(32^\circ, 53^\circ\)[/tex], and [tex]\(95^\circ\)[/tex], confirming that these angles form a valid triangle:

[tex]\[ 32^\circ + 53^\circ + 95^\circ = 180^\circ \][/tex]

With this information in mind, we need to match the angles [tex]\(32^\circ, 53^\circ\)[/tex], and [tex]\(95^\circ\)[/tex] to the correct options for [tex]\( \angle A \)[/tex], [tex]\( \angle B \)[/tex], and [tex]\( \angle C \)[/tex].

Given the correct measures for angle [tex]\( A \)[/tex], angle [tex]\( B \)[/tex], and angle [tex]\( C \)[/tex]:

[tex]\[ m \angle A = 32^\circ \][/tex]
[tex]\[ m \angle B = 53^\circ \][/tex]
[tex]\[ m \angle C = 95^\circ \][/tex]

Therefore, the correct option is:
[tex]\[ m \angle A = 32^\circ, m \angle B = 53^\circ, m \angle C = 95^\circ \][/tex]

Thus, the correct answer is:

[tex]\[ \boxed{2} \][/tex]

The correct order based on the given angles is [tex]\( m \angle A = 32^\circ, m \angle B = 53^\circ, m \angle C = 95^\circ \)[/tex], which corresponds to option 2.