Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's perform the operation and simplify the given expression step-by-step.
The given fractions are:
[tex]\[ \frac{x-3}{2x-8} \quad \text{and} \quad \frac{6x^2-96}{x^2-9} \][/tex]
### Step 1: Factorize the Numerators and Denominators
1. Factorize [tex]\(6x^2 - 96\)[/tex]:
[tex]\[ 6x^2 - 96 = 6(x^2 - 16) = 6(x - 4)(x + 4) \][/tex]
2. Factorize [tex]\(x^2 - 9\)[/tex]:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
3. Factorize [tex]\(2x - 8\)[/tex]:
[tex]\[ 2x - 8 = 2(x - 4) \][/tex]
Now, rewrite the original expression with the factorizations applied:
[tex]\[ \frac{x - 3}{2(x - 4)} \cdot \frac{6(x - 4)(x + 4)}{(x - 3)(x + 3)} \][/tex]
### Step 2: Cancel Common Factors
Identify and cancel the common factors from both the numerator and the denominator.
In the numerator and the denominator, we have:
[tex]\[ \frac{(x - 3) \cdot 6(x - 4)(x + 4)}{2(x - 4) \cdot (x - 3)(x + 3)} \][/tex]
The common factors [tex]\((x - 3)\)[/tex] and [tex]\((x - 4)\)[/tex] can be canceled out:
[tex]\[ \frac{6(x + 4)}{2(x + 3)} \][/tex]
### Step 3: Simplify the Remaining Expression
Further simplify the fraction:
[tex]\[ \frac{6(x + 4)}{2(x + 3)} = \frac{6}{2} \cdot \frac{(x + 4)}{(x + 3)} = 3 \cdot \frac{(x + 4)}{(x + 3)} \][/tex]
Thus, the simplified result is:
[tex]\[ \frac{3(x + 4)}{(x + 3)} \][/tex]
Hence, the detailed, step-by-step solution to the given problem is:
[tex]\[ \frac{3(x + 4)}{(x + 3)} \][/tex]
The given fractions are:
[tex]\[ \frac{x-3}{2x-8} \quad \text{and} \quad \frac{6x^2-96}{x^2-9} \][/tex]
### Step 1: Factorize the Numerators and Denominators
1. Factorize [tex]\(6x^2 - 96\)[/tex]:
[tex]\[ 6x^2 - 96 = 6(x^2 - 16) = 6(x - 4)(x + 4) \][/tex]
2. Factorize [tex]\(x^2 - 9\)[/tex]:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
3. Factorize [tex]\(2x - 8\)[/tex]:
[tex]\[ 2x - 8 = 2(x - 4) \][/tex]
Now, rewrite the original expression with the factorizations applied:
[tex]\[ \frac{x - 3}{2(x - 4)} \cdot \frac{6(x - 4)(x + 4)}{(x - 3)(x + 3)} \][/tex]
### Step 2: Cancel Common Factors
Identify and cancel the common factors from both the numerator and the denominator.
In the numerator and the denominator, we have:
[tex]\[ \frac{(x - 3) \cdot 6(x - 4)(x + 4)}{2(x - 4) \cdot (x - 3)(x + 3)} \][/tex]
The common factors [tex]\((x - 3)\)[/tex] and [tex]\((x - 4)\)[/tex] can be canceled out:
[tex]\[ \frac{6(x + 4)}{2(x + 3)} \][/tex]
### Step 3: Simplify the Remaining Expression
Further simplify the fraction:
[tex]\[ \frac{6(x + 4)}{2(x + 3)} = \frac{6}{2} \cdot \frac{(x + 4)}{(x + 3)} = 3 \cdot \frac{(x + 4)}{(x + 3)} \][/tex]
Thus, the simplified result is:
[tex]\[ \frac{3(x + 4)}{(x + 3)} \][/tex]
Hence, the detailed, step-by-step solution to the given problem is:
[tex]\[ \frac{3(x + 4)}{(x + 3)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.