Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Simplify the following expression:

[tex]\[ \frac{4}{2x^2} + \frac{1}{3x} \][/tex]


Sagot :

To simplify the expression

[tex]\[ \frac{4}{2 x^2} + \frac{1}{3 x}, \][/tex]

we need to work step-by-step.

### Step 1: Simplify each term individually
First, simplify the term [tex]\(\frac{4}{2 x^2}\)[/tex].

[tex]\[ \frac{4}{2 x^2} = \frac{4}{2 \cdot x^2} = \frac{4}{2} \cdot \frac{1}{x^2} = 2 \cdot \frac{1}{x^2} = \frac{2}{x^2} \][/tex]

Now, the second term [tex]\(\frac{1}{3 x}\)[/tex] is already simplified.

### Step 2: Combine the terms
Write both terms with the same denominator. The least common denominator (LCD) of [tex]\(x^2\)[/tex] and [tex]\(3x\)[/tex] is [tex]\(3x^2\)[/tex]. Rewrite each fraction so that it has this common denominator.

For [tex]\(\frac{2}{x^2}\)[/tex]:

[tex]\[ \frac{2}{x^2} = \frac{2 \cdot 3}{x^2 \cdot 3} = \frac{6}{3 x^2} \][/tex]

For [tex]\(\frac{1}{3 x}\)[/tex]:

[tex]\[ \frac{1}{3 x} = \frac{1 \cdot x}{3 x \cdot x} = \frac{x}{3 x^2} \][/tex]

### Step 3: Add the fractions
Now that both terms have the common denominator [tex]\(3x^2\)[/tex], we can add them together:

[tex]\[ \frac{6}{3 x^2} + \frac{x}{3 x^2} = \frac{6 + x}{3 x^2} \][/tex]

### Step 4: Simplify the combined expression
The final step is to express this in the form [tex]\(\frac{x + [?]}{x}\)[/tex]. Observe the combined expression:

[tex]\[ \frac{6 + x}{3 x^2} = \frac{x + 6}{3 x^2} \][/tex]

Separate the expression where the denominator is split:

[tex]\[ \frac{6 + x}{3 x^2} = \frac{x}{3 x^2} + \frac{6}{3 x^2} = \frac{1}{3 x} + \frac{2}{x^2} \][/tex]

So, putting it into the form we need:

[tex]\[ \frac{x}{x \cdot 3 x} + \frac{6}{x \cdot 3 x^2} = \frac{1}{3 x} + \frac{2}{x^2} = \frac{1 + \frac{6}{x}}{3 x} \][/tex]

Hence, in the simplified form [tex]\(\frac{x + 6}{3 x^2}\)[/tex], where our numerator [tex]\([?] = 6\)[/tex].

Therefore, the final answer for the simplified form [tex]\(x + [?]\)[/tex] is:

[tex]\[ \boxed{6} \][/tex]