Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the probability that a randomly selected student earned a C or better, we need to consider the grades that correspond to C or better. According to the provided table:
- A grade of [tex]\(4\)[/tex] corresponds to an A.
- A grade of [tex]\(3\)[/tex] corresponds to a B.
- A grade of [tex]\(2\)[/tex] corresponds to a C.
We won't consider grades below C (i.e., 1 for D and 0 for F).
Now we need to find the probabilities of the grades that are C or better, which are 4, 3, and 2. According to the table, the probabilities are:
- The probability of getting an A (grade 4) is 0.43.
- The probability of getting a B (grade 3) is 0.31.
- The probability of getting a C (grade 2) is 0.17.
To find the total probability that a randomly selected student earned a C or better, we sum these probabilities up:
[tex]\[ \text{Probability (C or better)} = \text{Probability (A)} + \text{Probability (B)} + \text{Probability (C)} \][/tex]
Substituting the given probabilities:
[tex]\[ \text{Probability (C or better)} = 0.43 + 0.31 + 0.17 \][/tex]
Adding these values together:
[tex]\[ 0.43 + 0.31 + 0.17 = 0.91 \][/tex]
Thus, the probability that a randomly selected student earned a C or better is [tex]\(0.91\)[/tex].
So, the correct answer is [tex]\(\boxed{0.91}\)[/tex].
- A grade of [tex]\(4\)[/tex] corresponds to an A.
- A grade of [tex]\(3\)[/tex] corresponds to a B.
- A grade of [tex]\(2\)[/tex] corresponds to a C.
We won't consider grades below C (i.e., 1 for D and 0 for F).
Now we need to find the probabilities of the grades that are C or better, which are 4, 3, and 2. According to the table, the probabilities are:
- The probability of getting an A (grade 4) is 0.43.
- The probability of getting a B (grade 3) is 0.31.
- The probability of getting a C (grade 2) is 0.17.
To find the total probability that a randomly selected student earned a C or better, we sum these probabilities up:
[tex]\[ \text{Probability (C or better)} = \text{Probability (A)} + \text{Probability (B)} + \text{Probability (C)} \][/tex]
Substituting the given probabilities:
[tex]\[ \text{Probability (C or better)} = 0.43 + 0.31 + 0.17 \][/tex]
Adding these values together:
[tex]\[ 0.43 + 0.31 + 0.17 = 0.91 \][/tex]
Thus, the probability that a randomly selected student earned a C or better is [tex]\(0.91\)[/tex].
So, the correct answer is [tex]\(\boxed{0.91}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.