Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which of the given equations represents a nonlinear function, we must analyze each equation in terms of its degree. The degree of an equation is defined as the highest power of the variable(s) in the equation.
Let's examine these equations one by one:
### Equation 1: [tex]\( x(y-5) = 2 \)[/tex]
Rewrite this equation in standard form:
[tex]\[ x(y-5) = 2 \][/tex]
[tex]\[ xy - 5x = 2 \][/tex]
The degree of a term is the sum of the exponents of the variables in that term:
- The term [tex]\( xy \)[/tex] has a degree of [tex]\( 1 + 1 = 2 \)[/tex]
- The term [tex]\( -5x \)[/tex] has a degree of 1
The highest degree term is [tex]\( xy \)[/tex], which is of degree 2. Therefore, this equation is nonlinear.
### Equation 2: [tex]\( y - 2(x+9) = 0 \)[/tex]
Rewrite this equation in standard form:
[tex]\[ y - 2(x+9) = 0 \][/tex]
[tex]\[ y - 2x - 18 = 0 \][/tex]
- The term [tex]\( y \)[/tex] has a degree of 1
- The term [tex]\( -2x \)[/tex] has a degree of 1
- The term [tex]\( -18 \)[/tex] is a constant with degree 0
The highest degree term is of degree 1. Therefore, this equation is linear.
### Equation 3: [tex]\( 3y + 6(2-x) = 5 \)[/tex]
Rewrite this equation in standard form:
[tex]\[ 3y + 6(2-x) = 5 \][/tex]
[tex]\[ 3y + 12 - 6x = 5 \][/tex]
[tex]\[ 3y - 6x + 12 = 5 \][/tex]
[tex]\[ 3y - 6x + 7 = 0 \][/tex]
- The term [tex]\( 3y \)[/tex] has a degree of 1
- The term [tex]\( -6x \)[/tex] has a degree of 1
- The term [tex]\( 7 \)[/tex] is a constant with degree 0
The highest degree term is of degree 1. Therefore, this equation is linear.
### Equation 4: [tex]\( 2(y + x) = 0 \)[/tex]
Rewrite this equation in standard form:
[tex]\[ 2(y + x) = 0 \][/tex]
[tex]\[ 2y + 2x = 0 \][/tex]
- The term [tex]\( 2y \)[/tex] has a degree of 1
- The term [tex]\( 2x \)[/tex] has a degree of 1
The highest degree term is of degree 1. Therefore, this equation is linear.
After evaluating all the equations:
- The first equation [tex]\( x(y-5)=2 \)[/tex] is nonlinear.
- The second equation [tex]\( y - 2(x+9)=0 \)[/tex] is linear.
- The third equation [tex]\( 3y + 6(2-x)=5 \)[/tex] is linear.
- The fourth equation [tex]\( 2(y+x)=0 \)[/tex] is linear.
Thus, the equation that represents a nonlinear function is:
[tex]\[ x(y-5) = 2 \][/tex]
Let's examine these equations one by one:
### Equation 1: [tex]\( x(y-5) = 2 \)[/tex]
Rewrite this equation in standard form:
[tex]\[ x(y-5) = 2 \][/tex]
[tex]\[ xy - 5x = 2 \][/tex]
The degree of a term is the sum of the exponents of the variables in that term:
- The term [tex]\( xy \)[/tex] has a degree of [tex]\( 1 + 1 = 2 \)[/tex]
- The term [tex]\( -5x \)[/tex] has a degree of 1
The highest degree term is [tex]\( xy \)[/tex], which is of degree 2. Therefore, this equation is nonlinear.
### Equation 2: [tex]\( y - 2(x+9) = 0 \)[/tex]
Rewrite this equation in standard form:
[tex]\[ y - 2(x+9) = 0 \][/tex]
[tex]\[ y - 2x - 18 = 0 \][/tex]
- The term [tex]\( y \)[/tex] has a degree of 1
- The term [tex]\( -2x \)[/tex] has a degree of 1
- The term [tex]\( -18 \)[/tex] is a constant with degree 0
The highest degree term is of degree 1. Therefore, this equation is linear.
### Equation 3: [tex]\( 3y + 6(2-x) = 5 \)[/tex]
Rewrite this equation in standard form:
[tex]\[ 3y + 6(2-x) = 5 \][/tex]
[tex]\[ 3y + 12 - 6x = 5 \][/tex]
[tex]\[ 3y - 6x + 12 = 5 \][/tex]
[tex]\[ 3y - 6x + 7 = 0 \][/tex]
- The term [tex]\( 3y \)[/tex] has a degree of 1
- The term [tex]\( -6x \)[/tex] has a degree of 1
- The term [tex]\( 7 \)[/tex] is a constant with degree 0
The highest degree term is of degree 1. Therefore, this equation is linear.
### Equation 4: [tex]\( 2(y + x) = 0 \)[/tex]
Rewrite this equation in standard form:
[tex]\[ 2(y + x) = 0 \][/tex]
[tex]\[ 2y + 2x = 0 \][/tex]
- The term [tex]\( 2y \)[/tex] has a degree of 1
- The term [tex]\( 2x \)[/tex] has a degree of 1
The highest degree term is of degree 1. Therefore, this equation is linear.
After evaluating all the equations:
- The first equation [tex]\( x(y-5)=2 \)[/tex] is nonlinear.
- The second equation [tex]\( y - 2(x+9)=0 \)[/tex] is linear.
- The third equation [tex]\( 3y + 6(2-x)=5 \)[/tex] is linear.
- The fourth equation [tex]\( 2(y+x)=0 \)[/tex] is linear.
Thus, the equation that represents a nonlinear function is:
[tex]\[ x(y-5) = 2 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.