Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the inequality [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we need to find the values of [tex]\(x\)[/tex] for which the expression is non-negative. We'll do this by following these steps:
1. Identify Critical Points: These are the values of [tex]\(x\)[/tex] where the numerator or denominator equals zero.
2. Determine Sign Changes: We need to examine the sign of the expression in each interval created by these critical points.
3. Construct the Solution: Based on the signs, we can determine the intervals where the expression is non-negative.
### 1. Identify Critical Points
Numerator:
[tex]\[ (x + 5)(x + 1) = 0 \][/tex]
This gives us two solutions:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
Denominator:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
### 2. Determine Sign Changes
Now, we have the critical points: [tex]\(x = -5\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 4\)[/tex]. These points divide the number line into four intervals:
- [tex]\( (-\infty, -5) \)[/tex]
- [tex]\( (-5, -1) \)[/tex]
- [tex]\( (-1, 4) \)[/tex]
- [tex]\( (4, \infty) \)[/tex]
We will test a point within each interval to determine whether the expression is positive or negative in that interval.
- For [tex]\(x < -5\)[/tex], pick [tex]\(x = -6\)[/tex]:
[tex]\[ \frac{(-6 + 5)(-6 + 1)}{-6 - 4} = \frac{(-1)(-5)}{-10} = \frac{5}{-10} = -0.5 \quad \text{(negative)} \][/tex]
- For [tex]\(-5 < x < -1\)[/tex], pick [tex]\(x = -3\)[/tex]:
[tex]\[ \frac{(-3 + 5)(-3 + 1)}{-3 - 4} = \frac{(2)(-2)}{-7} = \frac{-4}{-7} = \frac{4}{7} \quad \text{(positive)} \][/tex]
- For [tex]\(-1 < x < 4\)[/tex], pick [tex]\(x = 0\)[/tex]:
[tex]\[ \frac{(0 + 5)(0 + 1)}{0 - 4} = \frac{(5)(1)}{-4} = \frac{5}{-4} = -1.25 \quad \text{(negative)} \][/tex]
- For [tex]\(x > 4\)[/tex], pick [tex]\(x = 5\)[/tex]:
[tex]\[ \frac{(5 + 5)(5 + 1)}{5 - 4} = \frac{(10)(6)}{1} = 60 \quad \text{(positive)} \][/tex]
### 3. Construct the Solution
From our test points, we have determined that the expression is:
- Negative for [tex]\(x < -5\)[/tex]
- Positive for [tex]\(-5 < x < -1\)[/tex]
- Negative for [tex]\(-1 < x < 4\)[/tex]
- Positive for [tex]\(x > 4\)[/tex]
Finally, since we need [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we include the intervals where the expression is positive and also check if the critical points themselves are included:
- [tex]\(x = -5\)[/tex] and [tex]\(x = -1\)[/tex] make the numerator zero, thus satisfying the inequality.
- [tex]\(x = 4\)[/tex] makes the denominator zero, which must be excluded.
Therefore, the solution to the inequality is:
[tex]\[ -5 \leq x \leq -1 \][/tex]
1. Identify Critical Points: These are the values of [tex]\(x\)[/tex] where the numerator or denominator equals zero.
2. Determine Sign Changes: We need to examine the sign of the expression in each interval created by these critical points.
3. Construct the Solution: Based on the signs, we can determine the intervals where the expression is non-negative.
### 1. Identify Critical Points
Numerator:
[tex]\[ (x + 5)(x + 1) = 0 \][/tex]
This gives us two solutions:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
Denominator:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
### 2. Determine Sign Changes
Now, we have the critical points: [tex]\(x = -5\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 4\)[/tex]. These points divide the number line into four intervals:
- [tex]\( (-\infty, -5) \)[/tex]
- [tex]\( (-5, -1) \)[/tex]
- [tex]\( (-1, 4) \)[/tex]
- [tex]\( (4, \infty) \)[/tex]
We will test a point within each interval to determine whether the expression is positive or negative in that interval.
- For [tex]\(x < -5\)[/tex], pick [tex]\(x = -6\)[/tex]:
[tex]\[ \frac{(-6 + 5)(-6 + 1)}{-6 - 4} = \frac{(-1)(-5)}{-10} = \frac{5}{-10} = -0.5 \quad \text{(negative)} \][/tex]
- For [tex]\(-5 < x < -1\)[/tex], pick [tex]\(x = -3\)[/tex]:
[tex]\[ \frac{(-3 + 5)(-3 + 1)}{-3 - 4} = \frac{(2)(-2)}{-7} = \frac{-4}{-7} = \frac{4}{7} \quad \text{(positive)} \][/tex]
- For [tex]\(-1 < x < 4\)[/tex], pick [tex]\(x = 0\)[/tex]:
[tex]\[ \frac{(0 + 5)(0 + 1)}{0 - 4} = \frac{(5)(1)}{-4} = \frac{5}{-4} = -1.25 \quad \text{(negative)} \][/tex]
- For [tex]\(x > 4\)[/tex], pick [tex]\(x = 5\)[/tex]:
[tex]\[ \frac{(5 + 5)(5 + 1)}{5 - 4} = \frac{(10)(6)}{1} = 60 \quad \text{(positive)} \][/tex]
### 3. Construct the Solution
From our test points, we have determined that the expression is:
- Negative for [tex]\(x < -5\)[/tex]
- Positive for [tex]\(-5 < x < -1\)[/tex]
- Negative for [tex]\(-1 < x < 4\)[/tex]
- Positive for [tex]\(x > 4\)[/tex]
Finally, since we need [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we include the intervals where the expression is positive and also check if the critical points themselves are included:
- [tex]\(x = -5\)[/tex] and [tex]\(x = -1\)[/tex] make the numerator zero, thus satisfying the inequality.
- [tex]\(x = 4\)[/tex] makes the denominator zero, which must be excluded.
Therefore, the solution to the inequality is:
[tex]\[ -5 \leq x \leq -1 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.