Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the inequality [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we need to find the values of [tex]\(x\)[/tex] for which the expression is non-negative. We'll do this by following these steps:
1. Identify Critical Points: These are the values of [tex]\(x\)[/tex] where the numerator or denominator equals zero.
2. Determine Sign Changes: We need to examine the sign of the expression in each interval created by these critical points.
3. Construct the Solution: Based on the signs, we can determine the intervals where the expression is non-negative.
### 1. Identify Critical Points
Numerator:
[tex]\[ (x + 5)(x + 1) = 0 \][/tex]
This gives us two solutions:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
Denominator:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
### 2. Determine Sign Changes
Now, we have the critical points: [tex]\(x = -5\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 4\)[/tex]. These points divide the number line into four intervals:
- [tex]\( (-\infty, -5) \)[/tex]
- [tex]\( (-5, -1) \)[/tex]
- [tex]\( (-1, 4) \)[/tex]
- [tex]\( (4, \infty) \)[/tex]
We will test a point within each interval to determine whether the expression is positive or negative in that interval.
- For [tex]\(x < -5\)[/tex], pick [tex]\(x = -6\)[/tex]:
[tex]\[ \frac{(-6 + 5)(-6 + 1)}{-6 - 4} = \frac{(-1)(-5)}{-10} = \frac{5}{-10} = -0.5 \quad \text{(negative)} \][/tex]
- For [tex]\(-5 < x < -1\)[/tex], pick [tex]\(x = -3\)[/tex]:
[tex]\[ \frac{(-3 + 5)(-3 + 1)}{-3 - 4} = \frac{(2)(-2)}{-7} = \frac{-4}{-7} = \frac{4}{7} \quad \text{(positive)} \][/tex]
- For [tex]\(-1 < x < 4\)[/tex], pick [tex]\(x = 0\)[/tex]:
[tex]\[ \frac{(0 + 5)(0 + 1)}{0 - 4} = \frac{(5)(1)}{-4} = \frac{5}{-4} = -1.25 \quad \text{(negative)} \][/tex]
- For [tex]\(x > 4\)[/tex], pick [tex]\(x = 5\)[/tex]:
[tex]\[ \frac{(5 + 5)(5 + 1)}{5 - 4} = \frac{(10)(6)}{1} = 60 \quad \text{(positive)} \][/tex]
### 3. Construct the Solution
From our test points, we have determined that the expression is:
- Negative for [tex]\(x < -5\)[/tex]
- Positive for [tex]\(-5 < x < -1\)[/tex]
- Negative for [tex]\(-1 < x < 4\)[/tex]
- Positive for [tex]\(x > 4\)[/tex]
Finally, since we need [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we include the intervals where the expression is positive and also check if the critical points themselves are included:
- [tex]\(x = -5\)[/tex] and [tex]\(x = -1\)[/tex] make the numerator zero, thus satisfying the inequality.
- [tex]\(x = 4\)[/tex] makes the denominator zero, which must be excluded.
Therefore, the solution to the inequality is:
[tex]\[ -5 \leq x \leq -1 \][/tex]
1. Identify Critical Points: These are the values of [tex]\(x\)[/tex] where the numerator or denominator equals zero.
2. Determine Sign Changes: We need to examine the sign of the expression in each interval created by these critical points.
3. Construct the Solution: Based on the signs, we can determine the intervals where the expression is non-negative.
### 1. Identify Critical Points
Numerator:
[tex]\[ (x + 5)(x + 1) = 0 \][/tex]
This gives us two solutions:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
Denominator:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
### 2. Determine Sign Changes
Now, we have the critical points: [tex]\(x = -5\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 4\)[/tex]. These points divide the number line into four intervals:
- [tex]\( (-\infty, -5) \)[/tex]
- [tex]\( (-5, -1) \)[/tex]
- [tex]\( (-1, 4) \)[/tex]
- [tex]\( (4, \infty) \)[/tex]
We will test a point within each interval to determine whether the expression is positive or negative in that interval.
- For [tex]\(x < -5\)[/tex], pick [tex]\(x = -6\)[/tex]:
[tex]\[ \frac{(-6 + 5)(-6 + 1)}{-6 - 4} = \frac{(-1)(-5)}{-10} = \frac{5}{-10} = -0.5 \quad \text{(negative)} \][/tex]
- For [tex]\(-5 < x < -1\)[/tex], pick [tex]\(x = -3\)[/tex]:
[tex]\[ \frac{(-3 + 5)(-3 + 1)}{-3 - 4} = \frac{(2)(-2)}{-7} = \frac{-4}{-7} = \frac{4}{7} \quad \text{(positive)} \][/tex]
- For [tex]\(-1 < x < 4\)[/tex], pick [tex]\(x = 0\)[/tex]:
[tex]\[ \frac{(0 + 5)(0 + 1)}{0 - 4} = \frac{(5)(1)}{-4} = \frac{5}{-4} = -1.25 \quad \text{(negative)} \][/tex]
- For [tex]\(x > 4\)[/tex], pick [tex]\(x = 5\)[/tex]:
[tex]\[ \frac{(5 + 5)(5 + 1)}{5 - 4} = \frac{(10)(6)}{1} = 60 \quad \text{(positive)} \][/tex]
### 3. Construct the Solution
From our test points, we have determined that the expression is:
- Negative for [tex]\(x < -5\)[/tex]
- Positive for [tex]\(-5 < x < -1\)[/tex]
- Negative for [tex]\(-1 < x < 4\)[/tex]
- Positive for [tex]\(x > 4\)[/tex]
Finally, since we need [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we include the intervals where the expression is positive and also check if the critical points themselves are included:
- [tex]\(x = -5\)[/tex] and [tex]\(x = -1\)[/tex] make the numerator zero, thus satisfying the inequality.
- [tex]\(x = 4\)[/tex] makes the denominator zero, which must be excluded.
Therefore, the solution to the inequality is:
[tex]\[ -5 \leq x \leq -1 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.