Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To address the problem, let's analyze the function [tex]\( f(x) = -7^x \)[/tex] and how it relates to the function [tex]\( g(x) = 7^x \)[/tex].
### Step-by-Step Solution:
1. Identifying the Transformation:
- The function [tex]\( f(x) = -7^x \)[/tex] can be derived from [tex]\( g(x) = 7^x \)[/tex].
- By introducing a negative sign in front of the exponential function, we are reflecting the graph of [tex]\( g(x) = 7^x \)[/tex] over the x-axis. Therefore, the answer to the first part is:
Your answer is (input a, b, c, d, e, or f): [tex]\( \textbf{e} \)[/tex]
2. Determining the Domain:
- The domain of the original function [tex]\( g(x) = 7^x \)[/tex] includes all real numbers: [tex]\( (-\infty, \infty) \)[/tex].
- The transformation to [tex]\( f(x) = -7^x \)[/tex] does not alter the values of x for which the function is defined. Thus, the domain remains all real numbers.
Your answer is (input Yes or No): [tex]\( \textbf{Yes} \)[/tex]
3. Finding the Range:
- The original function [tex]\( g(x) = 7^x \)[/tex] produces positive values for all real numbers x, so its range is [tex]\( (0, \infty) \)[/tex].
- Reflecting this function over the x-axis multiplies all outputs by -1, changing the range from positive to negative values. Hence, the range for [tex]\( f(x) = -7^x \)[/tex] becomes [tex]\( (-\infty, 0) \)[/tex].
The value of [tex]\( A \)[/tex]: [tex]\( \textbf{0} \)[/tex]
Combining the answers, we have:
1. [tex]\( e \)[/tex]
2. [tex]\( Yes \)[/tex]
3. [tex]\( 0 \)[/tex]
Thus, the detailed, step-by-step solution is completed.
### Step-by-Step Solution:
1. Identifying the Transformation:
- The function [tex]\( f(x) = -7^x \)[/tex] can be derived from [tex]\( g(x) = 7^x \)[/tex].
- By introducing a negative sign in front of the exponential function, we are reflecting the graph of [tex]\( g(x) = 7^x \)[/tex] over the x-axis. Therefore, the answer to the first part is:
Your answer is (input a, b, c, d, e, or f): [tex]\( \textbf{e} \)[/tex]
2. Determining the Domain:
- The domain of the original function [tex]\( g(x) = 7^x \)[/tex] includes all real numbers: [tex]\( (-\infty, \infty) \)[/tex].
- The transformation to [tex]\( f(x) = -7^x \)[/tex] does not alter the values of x for which the function is defined. Thus, the domain remains all real numbers.
Your answer is (input Yes or No): [tex]\( \textbf{Yes} \)[/tex]
3. Finding the Range:
- The original function [tex]\( g(x) = 7^x \)[/tex] produces positive values for all real numbers x, so its range is [tex]\( (0, \infty) \)[/tex].
- Reflecting this function over the x-axis multiplies all outputs by -1, changing the range from positive to negative values. Hence, the range for [tex]\( f(x) = -7^x \)[/tex] becomes [tex]\( (-\infty, 0) \)[/tex].
The value of [tex]\( A \)[/tex]: [tex]\( \textbf{0} \)[/tex]
Combining the answers, we have:
1. [tex]\( e \)[/tex]
2. [tex]\( Yes \)[/tex]
3. [tex]\( 0 \)[/tex]
Thus, the detailed, step-by-step solution is completed.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.