Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the least positive integer with which 3125 should be multiplied so that the product is a perfect square, we follow these steps:
1. Prime Factorization of 3125:
First, we need to find the prime factors of 3125.
[tex]\[ 3125 \div 5 = 625 \\ 625 \div 5 = 125 \\ 125 \div 5 = 25 \\ 25 \div 5 = 5 \\ 5 \div 5 = 1 \][/tex]
Therefore, the prime factorization of 3125 is:
[tex]\[ 3125 = 5^5 \][/tex]
2. Checking the exponents in the prime factorization:
To make a number a perfect square, all the exponents in its prime factorization must be even. In our case, the exponent of the prime factor 5 is 5, which is odd.
3. Determining the required multiplier:
Since the exponent of 5 in the factorization of 3125 is odd, we need to multiply 3125 by 5 to make the exponent even (5 + 1 = 6), because 6 is the next even number after 5.
Mathematically:
[tex]\[ 3125 \times 5 = 5^5 \times 5 = 5^6 \][/tex]
5^6 is a perfect square because the exponent 6 is even.
4. Conclusion:
Therefore, the least positive integer with which 3125 should be multiplied to make the product a perfect square is:
[tex]\[ \boxed{5} \][/tex]
Hence, the correct answer is:
[tex]\[ \qquad \boxed{5} \][/tex]
1. Prime Factorization of 3125:
First, we need to find the prime factors of 3125.
[tex]\[ 3125 \div 5 = 625 \\ 625 \div 5 = 125 \\ 125 \div 5 = 25 \\ 25 \div 5 = 5 \\ 5 \div 5 = 1 \][/tex]
Therefore, the prime factorization of 3125 is:
[tex]\[ 3125 = 5^5 \][/tex]
2. Checking the exponents in the prime factorization:
To make a number a perfect square, all the exponents in its prime factorization must be even. In our case, the exponent of the prime factor 5 is 5, which is odd.
3. Determining the required multiplier:
Since the exponent of 5 in the factorization of 3125 is odd, we need to multiply 3125 by 5 to make the exponent even (5 + 1 = 6), because 6 is the next even number after 5.
Mathematically:
[tex]\[ 3125 \times 5 = 5^5 \times 5 = 5^6 \][/tex]
5^6 is a perfect square because the exponent 6 is even.
4. Conclusion:
Therefore, the least positive integer with which 3125 should be multiplied to make the product a perfect square is:
[tex]\[ \boxed{5} \][/tex]
Hence, the correct answer is:
[tex]\[ \qquad \boxed{5} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.