Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the least positive integer with which 3125 should be multiplied so that the product is a perfect square, we follow these steps:
1. Prime Factorization of 3125:
First, we need to find the prime factors of 3125.
[tex]\[ 3125 \div 5 = 625 \\ 625 \div 5 = 125 \\ 125 \div 5 = 25 \\ 25 \div 5 = 5 \\ 5 \div 5 = 1 \][/tex]
Therefore, the prime factorization of 3125 is:
[tex]\[ 3125 = 5^5 \][/tex]
2. Checking the exponents in the prime factorization:
To make a number a perfect square, all the exponents in its prime factorization must be even. In our case, the exponent of the prime factor 5 is 5, which is odd.
3. Determining the required multiplier:
Since the exponent of 5 in the factorization of 3125 is odd, we need to multiply 3125 by 5 to make the exponent even (5 + 1 = 6), because 6 is the next even number after 5.
Mathematically:
[tex]\[ 3125 \times 5 = 5^5 \times 5 = 5^6 \][/tex]
5^6 is a perfect square because the exponent 6 is even.
4. Conclusion:
Therefore, the least positive integer with which 3125 should be multiplied to make the product a perfect square is:
[tex]\[ \boxed{5} \][/tex]
Hence, the correct answer is:
[tex]\[ \qquad \boxed{5} \][/tex]
1. Prime Factorization of 3125:
First, we need to find the prime factors of 3125.
[tex]\[ 3125 \div 5 = 625 \\ 625 \div 5 = 125 \\ 125 \div 5 = 25 \\ 25 \div 5 = 5 \\ 5 \div 5 = 1 \][/tex]
Therefore, the prime factorization of 3125 is:
[tex]\[ 3125 = 5^5 \][/tex]
2. Checking the exponents in the prime factorization:
To make a number a perfect square, all the exponents in its prime factorization must be even. In our case, the exponent of the prime factor 5 is 5, which is odd.
3. Determining the required multiplier:
Since the exponent of 5 in the factorization of 3125 is odd, we need to multiply 3125 by 5 to make the exponent even (5 + 1 = 6), because 6 is the next even number after 5.
Mathematically:
[tex]\[ 3125 \times 5 = 5^5 \times 5 = 5^6 \][/tex]
5^6 is a perfect square because the exponent 6 is even.
4. Conclusion:
Therefore, the least positive integer with which 3125 should be multiplied to make the product a perfect square is:
[tex]\[ \boxed{5} \][/tex]
Hence, the correct answer is:
[tex]\[ \qquad \boxed{5} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.