Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's work through the proof step-by-step.
Given expression: [tex]\((3n + 1)^2\)[/tex]
We need to expand and simplify this expression to prove the statement.
### Step 1: Expand the expression
Let's expand the square:
[tex]\[ (3n + 1)^2 = (3n + 1)(3n + 1) \][/tex]
Applying the distributive property (FOIL method):
[tex]\[ (3n + 1)(3n + 1) = 3n \cdot 3n + 3n \cdot 1 + 1 \cdot 3n + 1 \cdot 1 \][/tex]
[tex]\[ = 9n^2 + 3n + 3n + 1 \][/tex]
[tex]\[ = 9n^2 + 6n + 1 \][/tex]
### Step 2: Identify the coefficients
From the expanded expression [tex]\(9n^2 + 6n + 1\)[/tex]:
[tex]\[ \begin{aligned} n^2 \text{ term: } & 9n^2, \quad \text{(coefficient is 9)} \\ n \text{ term: } & 6n, \quad \text{(coefficient is 6)} \\ \text{constant term: } & 1 \end{aligned} \][/tex]
Thus, we can write:
[tex]\[ (3n + 1)^2 = 9n^2 + 6n + 1 \][/tex]
### Step 3: Factor out a multiple of 3 and simplify
We notice that [tex]\(9n^2 + 6n\)[/tex] is a multiple of 3:
[tex]\[ 9n^2 + 6n = 3(3n^2 + 2n) \][/tex]
So, we can rewrite the expression as:
[tex]\[ 9n^2 + 6n + 1 = 3(3n^2 + 2n) + 1 \][/tex]
This shows that [tex]\(9n^2 + 6n\)[/tex] is a multiple of 3, and when we add 1, we get a number that is one more than a multiple of 3.
### Conclusion
[tex]\[ \begin{aligned} (3n + 1)^2 &= 9n^2 + 6n + 1 \\ &= 3(3n^2 + 2n) + 1 \end{aligned} \][/tex]
This confirms that [tex]\((3n + 1)^2\)[/tex] is indeed one more than a multiple of 3.
Therefore, we have proven that the square of a number that is one more than a multiple of 3 is also one more than a multiple of 3.
Given expression: [tex]\((3n + 1)^2\)[/tex]
We need to expand and simplify this expression to prove the statement.
### Step 1: Expand the expression
Let's expand the square:
[tex]\[ (3n + 1)^2 = (3n + 1)(3n + 1) \][/tex]
Applying the distributive property (FOIL method):
[tex]\[ (3n + 1)(3n + 1) = 3n \cdot 3n + 3n \cdot 1 + 1 \cdot 3n + 1 \cdot 1 \][/tex]
[tex]\[ = 9n^2 + 3n + 3n + 1 \][/tex]
[tex]\[ = 9n^2 + 6n + 1 \][/tex]
### Step 2: Identify the coefficients
From the expanded expression [tex]\(9n^2 + 6n + 1\)[/tex]:
[tex]\[ \begin{aligned} n^2 \text{ term: } & 9n^2, \quad \text{(coefficient is 9)} \\ n \text{ term: } & 6n, \quad \text{(coefficient is 6)} \\ \text{constant term: } & 1 \end{aligned} \][/tex]
Thus, we can write:
[tex]\[ (3n + 1)^2 = 9n^2 + 6n + 1 \][/tex]
### Step 3: Factor out a multiple of 3 and simplify
We notice that [tex]\(9n^2 + 6n\)[/tex] is a multiple of 3:
[tex]\[ 9n^2 + 6n = 3(3n^2 + 2n) \][/tex]
So, we can rewrite the expression as:
[tex]\[ 9n^2 + 6n + 1 = 3(3n^2 + 2n) + 1 \][/tex]
This shows that [tex]\(9n^2 + 6n\)[/tex] is a multiple of 3, and when we add 1, we get a number that is one more than a multiple of 3.
### Conclusion
[tex]\[ \begin{aligned} (3n + 1)^2 &= 9n^2 + 6n + 1 \\ &= 3(3n^2 + 2n) + 1 \end{aligned} \][/tex]
This confirms that [tex]\((3n + 1)^2\)[/tex] is indeed one more than a multiple of 3.
Therefore, we have proven that the square of a number that is one more than a multiple of 3 is also one more than a multiple of 3.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.