Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the horizontal asymptote of the function [tex]\( y = \frac{3x + 12}{x - 6} \)[/tex], we need to find the behavior of the function as [tex]\( x \)[/tex] approaches infinity. Essentially, we're interested in the limit of the function [tex]\( y \)[/tex] as [tex]\( x \)[/tex] goes to infinity.
Here's a step-by-step approach:
1. Rewrite the function in a form that highlights the behavior as [tex]\( x \)[/tex] becomes very large:
[tex]\[ y = \frac{3x + 12}{x - 6} \][/tex]
2. Divide the numerator and the denominator by [tex]\( x \)[/tex], the highest power of [tex]\( x \)[/tex] present in the function:
[tex]\[ y = \frac{3x + 12}{x - 6} = \frac{3 + \frac{12}{x}}{1 - \frac{6}{x}} \][/tex]
3. Analyze the terms involving [tex]\( \frac{12}{x} \)[/tex] and [tex]\( \frac{6}{x} \)[/tex]:
- As [tex]\( x \)[/tex] approaches infinity, [tex]\( \frac{12}{x} \)[/tex] approaches 0.
- Similarly, [tex]\( \frac{6}{x} \)[/tex] also approaches 0.
4. Simplify the function using these limits:
[tex]\[ y = \frac{3 + \frac{12}{x}}{1 - \frac{6}{x}} \approx \frac{3 + 0}{1 - 0} = \frac{3}{1} = 3 \][/tex]
Thus, as [tex]\( x \)[/tex] approaches infinity or negative infinity, the function [tex]\( y = \frac{3x + 12}{x - 6} \)[/tex] approaches the value 3. This value is the horizontal asymptote of the function.
Therefore, the horizontal asymptote of the function [tex]\( y = \frac{3x + 12}{x - 6} \)[/tex] is:
[tex]\[ y = 3 \][/tex]
Here's a step-by-step approach:
1. Rewrite the function in a form that highlights the behavior as [tex]\( x \)[/tex] becomes very large:
[tex]\[ y = \frac{3x + 12}{x - 6} \][/tex]
2. Divide the numerator and the denominator by [tex]\( x \)[/tex], the highest power of [tex]\( x \)[/tex] present in the function:
[tex]\[ y = \frac{3x + 12}{x - 6} = \frac{3 + \frac{12}{x}}{1 - \frac{6}{x}} \][/tex]
3. Analyze the terms involving [tex]\( \frac{12}{x} \)[/tex] and [tex]\( \frac{6}{x} \)[/tex]:
- As [tex]\( x \)[/tex] approaches infinity, [tex]\( \frac{12}{x} \)[/tex] approaches 0.
- Similarly, [tex]\( \frac{6}{x} \)[/tex] also approaches 0.
4. Simplify the function using these limits:
[tex]\[ y = \frac{3 + \frac{12}{x}}{1 - \frac{6}{x}} \approx \frac{3 + 0}{1 - 0} = \frac{3}{1} = 3 \][/tex]
Thus, as [tex]\( x \)[/tex] approaches infinity or negative infinity, the function [tex]\( y = \frac{3x + 12}{x - 6} \)[/tex] approaches the value 3. This value is the horizontal asymptote of the function.
Therefore, the horizontal asymptote of the function [tex]\( y = \frac{3x + 12}{x - 6} \)[/tex] is:
[tex]\[ y = 3 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.