Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find slopes of lines that are parallel and perpendicular to the given line [tex]\( y = \frac{1}{4} x + 7 \)[/tex], follow these steps:
### Step-by-Step Solution:
1. Identify the slope of the given line:
- The equation of the given line is [tex]\( y = \frac{1}{4} x + 7 \)[/tex].
- This is in the slope-intercept form, [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- So, the slope [tex]\( m \)[/tex] of the given line is [tex]\( \frac{1}{4} \)[/tex].
2. Determine the slope of lines parallel to the given line:
- Lines that are parallel to each other have the same slope.
- Hence, the slope of lines parallel to the given line [tex]\( y = \frac{1}{4} x + 7 \)[/tex] will also be [tex]\( \frac{1}{4} \)[/tex].
3. Determine the slope of lines perpendicular to the given line:
- The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\( \frac{1}{4} \)[/tex] is calculated as follows:
- Take the reciprocal of [tex]\( \frac{1}{4} \)[/tex], which is [tex]\( 4 \)[/tex] (since reciprocal means [tex]\( \frac{1}{a} \)[/tex] turns into [tex]\( \frac{a}{1} \)[/tex]).
- Change the sign to the opposite (negative in this case), giving us [tex]\( -4 \)[/tex].
### Summary:
- The slope of lines parallel to the given line [tex]\( y = \frac{1}{4} x + 7 \)[/tex] is [tex]\( 0.25 \)[/tex].
- The slope of lines perpendicular to the given line [tex]\( y = \frac{1}{4} x + 7 \)[/tex] is [tex]\( -4 \)[/tex].
Thus, the slopes are:
- Parallel slope: [tex]\( 0.25 \)[/tex]
- Perpendicular slope: [tex]\( -4 \)[/tex]
### Step-by-Step Solution:
1. Identify the slope of the given line:
- The equation of the given line is [tex]\( y = \frac{1}{4} x + 7 \)[/tex].
- This is in the slope-intercept form, [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- So, the slope [tex]\( m \)[/tex] of the given line is [tex]\( \frac{1}{4} \)[/tex].
2. Determine the slope of lines parallel to the given line:
- Lines that are parallel to each other have the same slope.
- Hence, the slope of lines parallel to the given line [tex]\( y = \frac{1}{4} x + 7 \)[/tex] will also be [tex]\( \frac{1}{4} \)[/tex].
3. Determine the slope of lines perpendicular to the given line:
- The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\( \frac{1}{4} \)[/tex] is calculated as follows:
- Take the reciprocal of [tex]\( \frac{1}{4} \)[/tex], which is [tex]\( 4 \)[/tex] (since reciprocal means [tex]\( \frac{1}{a} \)[/tex] turns into [tex]\( \frac{a}{1} \)[/tex]).
- Change the sign to the opposite (negative in this case), giving us [tex]\( -4 \)[/tex].
### Summary:
- The slope of lines parallel to the given line [tex]\( y = \frac{1}{4} x + 7 \)[/tex] is [tex]\( 0.25 \)[/tex].
- The slope of lines perpendicular to the given line [tex]\( y = \frac{1}{4} x + 7 \)[/tex] is [tex]\( -4 \)[/tex].
Thus, the slopes are:
- Parallel slope: [tex]\( 0.25 \)[/tex]
- Perpendicular slope: [tex]\( -4 \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.