Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the standard deviation of the distribution for the number of free throws made out of 8 attempts, we proceed through the following steps:
1. Calculate the Mean (Expected Value) [tex]\( E(X) \)[/tex]:
The mean [tex]\(\mu\)[/tex] is given by the sum of each value of [tex]\(X\)[/tex] multiplied by its respective probability:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
Where [tex]\( x_i \)[/tex] represents the number of free throws made and [tex]\( P(x_i) \)[/tex] represents the probability of making [tex]\( x_i \)[/tex] free throws.
Given:
[tex]\[ \{ X = 0, 1, 2, 3, 4, 5, 6, 7, 8 \} \][/tex]
and their respective probabilities:
[tex]\[ \{ P(X) = 0.002, 0.008, 0.04, 0.12, 0.23, 0.28, 0.21, 0.09, 0.02 \} \][/tex]
Calculate the mean:
[tex]\[ \mu = (0 \cdot 0.002) + (1 \cdot 0.008) + (2 \cdot 0.04) + (3 \cdot 0.12) + (4 \cdot 0.23) + (5 \cdot 0.28) + (6 \cdot 0.21) + (7 \cdot 0.09) + (8 \cdot 0.02) \approx 4.818 \][/tex]
2. Calculate the Variance [tex]\( \sigma^2 \)[/tex]:
The variance is given by:
[tex]\[ \sigma^2 = \sum ((x_i - \mu)^2 \cdot P(x_i)) \][/tex]
Using the mean [tex]\(\mu \approx 4.818\)[/tex], we compute each term [tex]\((x_i - \mu)^2\)[/tex], multiply it by the corresponding probability [tex]\(P(x_i)\)[/tex], and sum:
[tex]\[ \sigma^2 = ((0 - 4.818)^2 \cdot 0.002) + ((1 - 4.818)^2 \cdot 0.008) + ((2 - 4.818)^2 \cdot 0.04) + ... + ((8 - 4.818)^2 \cdot 0.02) \approx 1.965 \][/tex]
3. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]:
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \approx \sqrt{1.965} \approx 1.401 \][/tex]
Given these computations:
- The mean of the distribution is approximately [tex]\(4.818\)[/tex],
- The variance of the distribution is approximately [tex]\(1.965\)[/tex],
- The standard deviation of the distribution is approximately [tex]\(1.401\)[/tex].
Therefore, the standard deviation of the distribution, closest to the options provided, is [tex]\(1.40\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{1.40} \][/tex]
1. Calculate the Mean (Expected Value) [tex]\( E(X) \)[/tex]:
The mean [tex]\(\mu\)[/tex] is given by the sum of each value of [tex]\(X\)[/tex] multiplied by its respective probability:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
Where [tex]\( x_i \)[/tex] represents the number of free throws made and [tex]\( P(x_i) \)[/tex] represents the probability of making [tex]\( x_i \)[/tex] free throws.
Given:
[tex]\[ \{ X = 0, 1, 2, 3, 4, 5, 6, 7, 8 \} \][/tex]
and their respective probabilities:
[tex]\[ \{ P(X) = 0.002, 0.008, 0.04, 0.12, 0.23, 0.28, 0.21, 0.09, 0.02 \} \][/tex]
Calculate the mean:
[tex]\[ \mu = (0 \cdot 0.002) + (1 \cdot 0.008) + (2 \cdot 0.04) + (3 \cdot 0.12) + (4 \cdot 0.23) + (5 \cdot 0.28) + (6 \cdot 0.21) + (7 \cdot 0.09) + (8 \cdot 0.02) \approx 4.818 \][/tex]
2. Calculate the Variance [tex]\( \sigma^2 \)[/tex]:
The variance is given by:
[tex]\[ \sigma^2 = \sum ((x_i - \mu)^2 \cdot P(x_i)) \][/tex]
Using the mean [tex]\(\mu \approx 4.818\)[/tex], we compute each term [tex]\((x_i - \mu)^2\)[/tex], multiply it by the corresponding probability [tex]\(P(x_i)\)[/tex], and sum:
[tex]\[ \sigma^2 = ((0 - 4.818)^2 \cdot 0.002) + ((1 - 4.818)^2 \cdot 0.008) + ((2 - 4.818)^2 \cdot 0.04) + ... + ((8 - 4.818)^2 \cdot 0.02) \approx 1.965 \][/tex]
3. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]:
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \approx \sqrt{1.965} \approx 1.401 \][/tex]
Given these computations:
- The mean of the distribution is approximately [tex]\(4.818\)[/tex],
- The variance of the distribution is approximately [tex]\(1.965\)[/tex],
- The standard deviation of the distribution is approximately [tex]\(1.401\)[/tex].
Therefore, the standard deviation of the distribution, closest to the options provided, is [tex]\(1.40\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{1.40} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.