Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the standard deviation of the distribution for the number of free throws made out of 8 attempts, we proceed through the following steps:
1. Calculate the Mean (Expected Value) [tex]\( E(X) \)[/tex]:
The mean [tex]\(\mu\)[/tex] is given by the sum of each value of [tex]\(X\)[/tex] multiplied by its respective probability:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
Where [tex]\( x_i \)[/tex] represents the number of free throws made and [tex]\( P(x_i) \)[/tex] represents the probability of making [tex]\( x_i \)[/tex] free throws.
Given:
[tex]\[ \{ X = 0, 1, 2, 3, 4, 5, 6, 7, 8 \} \][/tex]
and their respective probabilities:
[tex]\[ \{ P(X) = 0.002, 0.008, 0.04, 0.12, 0.23, 0.28, 0.21, 0.09, 0.02 \} \][/tex]
Calculate the mean:
[tex]\[ \mu = (0 \cdot 0.002) + (1 \cdot 0.008) + (2 \cdot 0.04) + (3 \cdot 0.12) + (4 \cdot 0.23) + (5 \cdot 0.28) + (6 \cdot 0.21) + (7 \cdot 0.09) + (8 \cdot 0.02) \approx 4.818 \][/tex]
2. Calculate the Variance [tex]\( \sigma^2 \)[/tex]:
The variance is given by:
[tex]\[ \sigma^2 = \sum ((x_i - \mu)^2 \cdot P(x_i)) \][/tex]
Using the mean [tex]\(\mu \approx 4.818\)[/tex], we compute each term [tex]\((x_i - \mu)^2\)[/tex], multiply it by the corresponding probability [tex]\(P(x_i)\)[/tex], and sum:
[tex]\[ \sigma^2 = ((0 - 4.818)^2 \cdot 0.002) + ((1 - 4.818)^2 \cdot 0.008) + ((2 - 4.818)^2 \cdot 0.04) + ... + ((8 - 4.818)^2 \cdot 0.02) \approx 1.965 \][/tex]
3. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]:
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \approx \sqrt{1.965} \approx 1.401 \][/tex]
Given these computations:
- The mean of the distribution is approximately [tex]\(4.818\)[/tex],
- The variance of the distribution is approximately [tex]\(1.965\)[/tex],
- The standard deviation of the distribution is approximately [tex]\(1.401\)[/tex].
Therefore, the standard deviation of the distribution, closest to the options provided, is [tex]\(1.40\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{1.40} \][/tex]
1. Calculate the Mean (Expected Value) [tex]\( E(X) \)[/tex]:
The mean [tex]\(\mu\)[/tex] is given by the sum of each value of [tex]\(X\)[/tex] multiplied by its respective probability:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
Where [tex]\( x_i \)[/tex] represents the number of free throws made and [tex]\( P(x_i) \)[/tex] represents the probability of making [tex]\( x_i \)[/tex] free throws.
Given:
[tex]\[ \{ X = 0, 1, 2, 3, 4, 5, 6, 7, 8 \} \][/tex]
and their respective probabilities:
[tex]\[ \{ P(X) = 0.002, 0.008, 0.04, 0.12, 0.23, 0.28, 0.21, 0.09, 0.02 \} \][/tex]
Calculate the mean:
[tex]\[ \mu = (0 \cdot 0.002) + (1 \cdot 0.008) + (2 \cdot 0.04) + (3 \cdot 0.12) + (4 \cdot 0.23) + (5 \cdot 0.28) + (6 \cdot 0.21) + (7 \cdot 0.09) + (8 \cdot 0.02) \approx 4.818 \][/tex]
2. Calculate the Variance [tex]\( \sigma^2 \)[/tex]:
The variance is given by:
[tex]\[ \sigma^2 = \sum ((x_i - \mu)^2 \cdot P(x_i)) \][/tex]
Using the mean [tex]\(\mu \approx 4.818\)[/tex], we compute each term [tex]\((x_i - \mu)^2\)[/tex], multiply it by the corresponding probability [tex]\(P(x_i)\)[/tex], and sum:
[tex]\[ \sigma^2 = ((0 - 4.818)^2 \cdot 0.002) + ((1 - 4.818)^2 \cdot 0.008) + ((2 - 4.818)^2 \cdot 0.04) + ... + ((8 - 4.818)^2 \cdot 0.02) \approx 1.965 \][/tex]
3. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]:
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \approx \sqrt{1.965} \approx 1.401 \][/tex]
Given these computations:
- The mean of the distribution is approximately [tex]\(4.818\)[/tex],
- The variance of the distribution is approximately [tex]\(1.965\)[/tex],
- The standard deviation of the distribution is approximately [tex]\(1.401\)[/tex].
Therefore, the standard deviation of the distribution, closest to the options provided, is [tex]\(1.40\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{1.40} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.