Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's simplify the given expression:
[tex]$ \frac{3}{x-3} - \frac{5}{x+2}. $[/tex]
### Step 1: Find a common denominator
The first step in simplifying this expression is to find a common denominator for the two fractions. The denominators are [tex]\(x - 3\)[/tex] and [tex]\(x + 2\)[/tex]. The common denominator will be the product of these two denominators:
[tex]$ (x - 3)(x + 2). $[/tex]
### Step 2: Rewrite each fraction with the common denominator
Next, we rewrite each fraction so that they have the common denominator:
[tex]$ \frac{3}{x-3} = \frac{3(x+2)}{(x-3)(x+2)}, $[/tex]
and
[tex]$ \frac{5}{x+2} = \frac{5(x-3)}{(x+2)(x-3)}. $[/tex]
### Step 3: Expand the numerators
Now we expand the numerators of these fractions:
[tex]$ \frac{3(x+2)}{(x-3)(x+2)} = \frac{3x + 6}{(x-3)(x+2)}, $[/tex]
and
[tex]$ \frac{5(x-3)}{(x+2)(x-3)} = \frac{5x - 15}{(x-3)(x+2)}. $[/tex]
### Step 4: Combine the fractions
Subtract the second fraction from the first fraction, combining them over the common denominator:
[tex]$ \frac{3x + 6}{(x-3)(x+2)} - \frac{5x - 15}{(x-3)(x+2)} = \frac{(3x + 6) - (5x - 15)}{(x-3)(x+2)}. $[/tex]
### Step 5: Simplify the numerator
Distribute the negative sign and combine like terms in the numerator:
[tex]$ (3x + 6) - (5x - 15) = 3x + 6 - 5x + 15 = -2x + 21. $[/tex]
So, the combined fraction becomes:
[tex]$ \frac{-2x + 21}{(x-3)(x+2)}. $[/tex]
Therefore, the simplified form of the given expression is:
[tex]$ \frac{-2x + 21}{(x-3)(x+2)}. $[/tex]
[tex]$ \frac{3}{x-3} - \frac{5}{x+2}. $[/tex]
### Step 1: Find a common denominator
The first step in simplifying this expression is to find a common denominator for the two fractions. The denominators are [tex]\(x - 3\)[/tex] and [tex]\(x + 2\)[/tex]. The common denominator will be the product of these two denominators:
[tex]$ (x - 3)(x + 2). $[/tex]
### Step 2: Rewrite each fraction with the common denominator
Next, we rewrite each fraction so that they have the common denominator:
[tex]$ \frac{3}{x-3} = \frac{3(x+2)}{(x-3)(x+2)}, $[/tex]
and
[tex]$ \frac{5}{x+2} = \frac{5(x-3)}{(x+2)(x-3)}. $[/tex]
### Step 3: Expand the numerators
Now we expand the numerators of these fractions:
[tex]$ \frac{3(x+2)}{(x-3)(x+2)} = \frac{3x + 6}{(x-3)(x+2)}, $[/tex]
and
[tex]$ \frac{5(x-3)}{(x+2)(x-3)} = \frac{5x - 15}{(x-3)(x+2)}. $[/tex]
### Step 4: Combine the fractions
Subtract the second fraction from the first fraction, combining them over the common denominator:
[tex]$ \frac{3x + 6}{(x-3)(x+2)} - \frac{5x - 15}{(x-3)(x+2)} = \frac{(3x + 6) - (5x - 15)}{(x-3)(x+2)}. $[/tex]
### Step 5: Simplify the numerator
Distribute the negative sign and combine like terms in the numerator:
[tex]$ (3x + 6) - (5x - 15) = 3x + 6 - 5x + 15 = -2x + 21. $[/tex]
So, the combined fraction becomes:
[tex]$ \frac{-2x + 21}{(x-3)(x+2)}. $[/tex]
Therefore, the simplified form of the given expression is:
[tex]$ \frac{-2x + 21}{(x-3)(x+2)}. $[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.