Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find which expression is equivalent to [tex]\(\frac{\frac{3}{x-2}-5}{2-\frac{4}{x-2}}\)[/tex], we need to simplify the given expression step by step.
Given expression:
[tex]\[ \frac{\frac{3}{x-2}-5}{2-\frac{4}{x-2}} \][/tex]
### Step 1: Simplify the Numerator
First, we will simplify the numerator [tex]\(\frac{3}{x-2} - 5\)[/tex].
Rewrite [tex]\( -5 \)[/tex] as a fraction:
[tex]\[ -5 = \frac{-5(x-2)}{x-2} = \frac{-5x + 10}{x-2} \][/tex]
Now, combine the fractions:
[tex]\[ \frac{3}{x-2} - 5 = \frac{3}{x-2} + \frac{-5x + 10}{x-2} = \frac{3 - 5x + 10}{x-2} = \frac{13 - 5x}{x-2} \][/tex]
### Step 2: Simplify the Denominator
Next, we need to simplify the denominator [tex]\( 2 - \frac{4}{x-2} \)[/tex].
Rewrite [tex]\( 2 \)[/tex] as a fraction:
[tex]\[ 2 = \frac{2(x-2)}{x-2} = \frac{2x - 4}{x-2} \][/tex]
Now, combine the fractions:
[tex]\[ 2 - \frac{4}{x-2} = \frac{2x - 4}{x-2} - \frac{4}{x-2} = \frac{2x - 4 - 4}{x-2} = \frac{2x - 8}{x-2} \][/tex]
### Step 3: Divide the Numerator by the Denominator
Now that we have simplified both the numerator and the denominator, we can divide one by the other:
[tex]\[ \frac{\frac{13 - 5x}{x-2}}{\frac{2x - 8}{x-2}} \][/tex]
Since both fractions have the same denominator [tex]\((x-2)\)[/tex], they cancel out:
[tex]\[ \frac{13 - 5x}{2x - 8} \][/tex]
### Simplified Expression
The equivalent simplified expression is:
[tex]\[ \frac{13 - 5x}{2x - 8} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{13-5x}{2x-8}} \][/tex]
Given expression:
[tex]\[ \frac{\frac{3}{x-2}-5}{2-\frac{4}{x-2}} \][/tex]
### Step 1: Simplify the Numerator
First, we will simplify the numerator [tex]\(\frac{3}{x-2} - 5\)[/tex].
Rewrite [tex]\( -5 \)[/tex] as a fraction:
[tex]\[ -5 = \frac{-5(x-2)}{x-2} = \frac{-5x + 10}{x-2} \][/tex]
Now, combine the fractions:
[tex]\[ \frac{3}{x-2} - 5 = \frac{3}{x-2} + \frac{-5x + 10}{x-2} = \frac{3 - 5x + 10}{x-2} = \frac{13 - 5x}{x-2} \][/tex]
### Step 2: Simplify the Denominator
Next, we need to simplify the denominator [tex]\( 2 - \frac{4}{x-2} \)[/tex].
Rewrite [tex]\( 2 \)[/tex] as a fraction:
[tex]\[ 2 = \frac{2(x-2)}{x-2} = \frac{2x - 4}{x-2} \][/tex]
Now, combine the fractions:
[tex]\[ 2 - \frac{4}{x-2} = \frac{2x - 4}{x-2} - \frac{4}{x-2} = \frac{2x - 4 - 4}{x-2} = \frac{2x - 8}{x-2} \][/tex]
### Step 3: Divide the Numerator by the Denominator
Now that we have simplified both the numerator and the denominator, we can divide one by the other:
[tex]\[ \frac{\frac{13 - 5x}{x-2}}{\frac{2x - 8}{x-2}} \][/tex]
Since both fractions have the same denominator [tex]\((x-2)\)[/tex], they cancel out:
[tex]\[ \frac{13 - 5x}{2x - 8} \][/tex]
### Simplified Expression
The equivalent simplified expression is:
[tex]\[ \frac{13 - 5x}{2x - 8} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{13-5x}{2x-8}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.